Biogenic polyphosphate as relevant regulator of seasonal phosphate storage in surface sediments of stratified eutrophic lakes

L. Schröder; P. Schmieder; M. Hupfer

Biogeochemistry 168, 40 (2025)

Polyphosphate is formed by polyphosphate- accumulating organisms occurring in various terrestrial, freshwater, and marine ecosystems as well as industrial environments. Although polyphosphateaccumulating organisms and polyphosphate have been well studied in enhanced biological phosphorus (P) removal from wastewater treatment plants, their role in the internal P cycle of natural lakes remains unclear. Several studies have shown that polyphosphate storage is widespread in lake sediments. In this study, 31P nuclear magnetic resonance spectroscopy was used to analyse the seasonal dynamics of polyphosphate and its drivers at the sediment surface of three stratified German lakes with strong seasonality of hypolimnetic oxygen concentrations. Similar seasonal patterns of polyphosphate were observed in all three lakes. Polyphosphate content increased by a factor of three to five at the beginning of summer stratification, with the maximum content observed in May when oxygen was already very low. During this period, strong redox gradients prevailed within the topmost sediment layer, and highly soluble reactive P concentrations were present in the pore water due to the reductive release of P bound to iron(III) oxides and oxide-hydroxides. Polyphosphate acted as a temporary P storage and was released after a delay, which may mitigate sedimentary P release into the water body during the (early) summer stratification. The observed seasonal dynamics of polyphosphate at the sediment surface offer a novel insight into the link between the P and iron cycles in lakes.