

Solution State NMR

Autumn School FMP 2010

02.11.2010

Peter Schmieder
AG Solution NMR

General aspects of NMR-spectroscopy

Solution state NMR

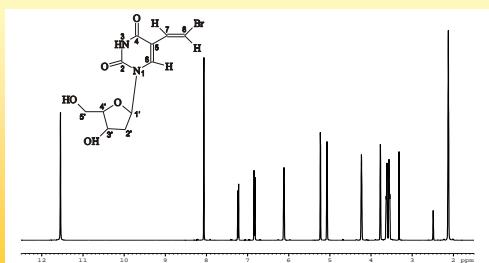
Peter Schmieder
AG Solution NMR

General aspects of NMR spectroscopy

3/46

Nuclear Magnetic Resonance

NMR-spectroscopy observes the resonance interaction of atomic nuclei with electromagnetic waves. The effect is only detectable in a strong magnetic field. Every atomic nucleus is observed separately and in addition interactions between nuclei can be visualized. NMR therefore corresponds well to the chemists view of a molecule as atoms connected by bonds.

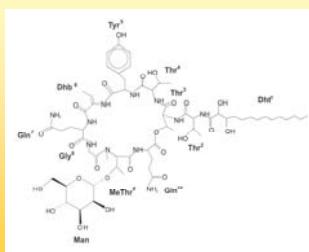

Solution state NMR

Peter Schmieder
AG Solution NMR

General aspects of NMR spectroscopy

4/46

Analytical method accompanying synthetic work


Solution state NMR

Peter Schmieder
AG Solution NMR

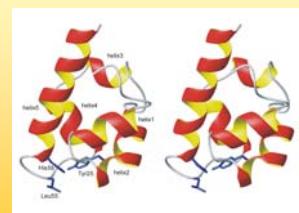
General aspects of NMR spectroscopy

5/46

Structure elucidation of natural compounds

NMR is very powerful in the determination of the constitution of natural products

Solution state NMR

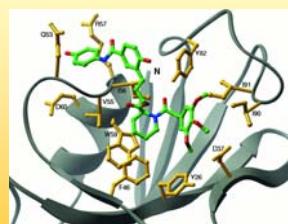

Peter Schmieder
AG Solution NMR

General aspects of NMR spectroscopy

6/46

Determination of the three-dimensional structure of proteins

NMR can help to determine the 3D structure of proteins at atomic resolution, in solution as well as in the solid state


Solution state NMR

Peter Schmieder
AG Solution NMR

General aspects of NMR spectroscopy

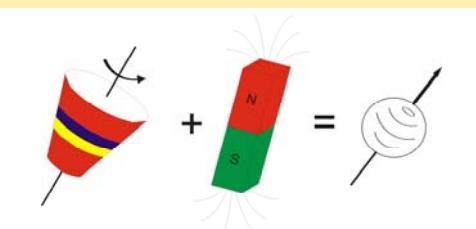
Determination of molecular interactions

NMR can be used to detect the interaction between proteins and ligands

Solution state NMR

Peter Schmieder
AG Solution NMR

Basic principles of NMR-spectroscopy

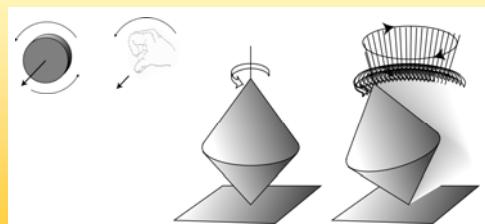


Solution state NMR

Peter Schmieder
AG Solution NMR

Basic principles of NMR-spectroscopy

Basis of the effect of nuclear magnetic resonance is the nuclear spin, that can be imagined as a mixture of gyroscope and magnetic needle

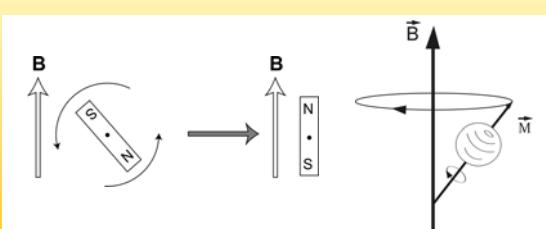


Solution state NMR

Peter Schmieder
AG Solution NMR

Basic principles of NMR-spectroscopy

A gyroscope has an angular momentum whose axis is stable in three-dimensional space



Solution state NMR

Peter Schmieder
AG Solution NMR

Basic principles of NMR-spectroscopy

An alignment of the "magnetic needle" with an external magnetic field is prevented by the properties of a gyroscope, a precession begins

Solution state NMR

Peter Schmieder
AG Solution NMR

Basic principles of NMR-spectroscopy

The resonance frequency of the spins is determined by the magnetic field, as is the sensitivity and the resolution of the spectra

B_0 [Tesla]	v_0 [MHz]
1.4	60
5.9	250
9.4	400
14.1	600
21.2	900

Solution state NMR

Peter Schmieder
AG Solution NMR

Basic principles of NMR-spectroscopy

13/46

Magnetic properties of relevant nuclei

nucleus		natural abundance	gyrom. ratio
^1H	1/2	99.98 %	26.75
^{12}C	0	98.89 %	0
^{13}C	1/2	1.11 %	6.73
^{14}N	1	99.63 %	1.93
^{15}N	1/2	0.37 %	-2.71
^{19}F	1/2	100 %	25.18
^{31}P	1/2	100%	10.84
^{113}Cd	1/2	12.26 %	-5.96

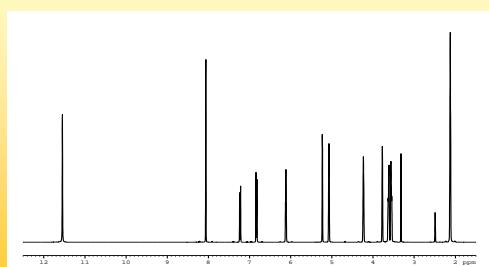
Solution state NMR

Peter Schmieder
AG Solution NMR

Parameters in NMR-spectroscopy

14/46

Parameters in NMR-spectroscopy


Solution state NMR

Peter Schmieder
AG Solution NMR

Parameters in NMR-spectroscopy

15/46

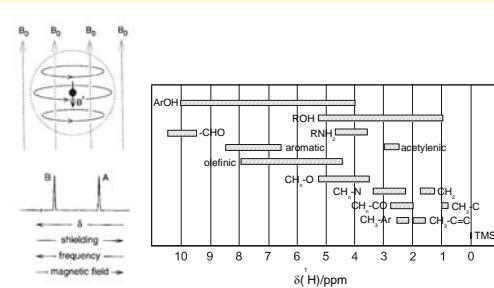
Each atom in the molecule gives rise to a resonance line

Solution state NMR

Peter Schmieder
AG Solution NMR

Chemical shift

Electrons around the nucleus shield it from the external magnetic field, the more electrons the weaker the field

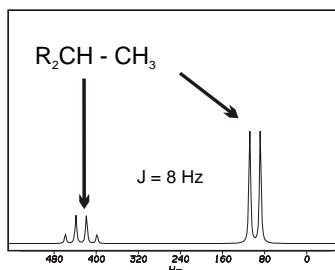

Solution state NMR

Peter Schmieder
AG Solution NMR

Parameters in NMR-spectroscopy

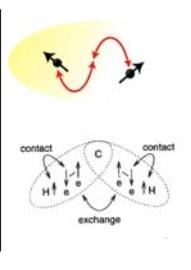
16/46

The chemical shift depends on the chemical environment

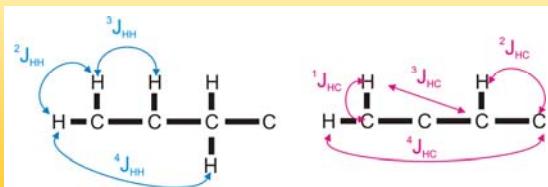

Solution state NMR

Peter Schmieder
AG Solution NMR

Parameters in NMR-spectroscopy


18/46

Scalar coupling splits the signals according to the number of neighboring nuclei


Solution state NMR

Peter Schmieder
AG Solution NMR

Parameters in NMR-spectroscopy

Coupling constants can either be homonuclear (between like nuclei) or heteronuclear (between different nuclei) and can either be direct (one-bond) or long-range (multiple bonds)

FMP

Solution state NMR

Peter Schmieder
AG Solution NMR

Parameters in NMR-spectroscopy

Direct couplings are usually one order of magnitude larger than the so-called long-range couplings

$^1J_{HH} = 276 \text{ Hz}$	$^1J_{HC} = 125 \dots 200 \text{ Hz}$	$^1J_{HN} = 60 \dots 100 \text{ Hz}$
$^2J_{HH} = 0 \dots 30 \text{ Hz}$ $^3J_{HH} = 0 \dots 20 \text{ Hz}$ $^4J_{HH} = 0 \dots 3 \text{ Hz}$	$^2J_{HC} = 0 \dots 20 \text{ Hz}$ $^3J_{HC} = 0 \dots 15 \text{ Hz}$ $^4J_{HC} = 0 \dots 2 \text{ Hz}$	$^2J_{HN} = 0 \dots 15 \text{ Hz}$ $^3J_{HN} = 0 \dots 8 \text{ Hz}$ $^4J_{HN} = 0 \dots 1 \text{ Hz}$

FMP

Solution state NMR

Peter Schmieder
AG Solution NMR

Parameters in NMR-spectroscopy

21/46

Dipolar coupling

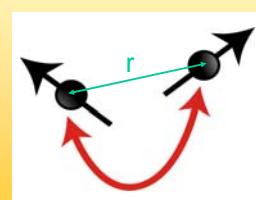
The nuclei interact directly through space via a dipol-dipol interaction

In solution NMR this interaction is averaged to zero due to the fast isotropic movement of the molecules but it is still a source of relaxation

FMP

Solution state NMR

Peter Schmieder
AG Solution NMR


Parameters in NMR-spectroscopy

22/46

One aspect of relaxation is the NOE-Effect, that depends on the distance between two nuclei

$$I_{NOE} \sim 1/r^6$$

Since the intensity drops quickly with increasing distance the effect can only be observed up to 500 pm

FMP

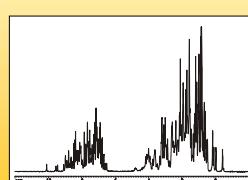
Solution state NMR

Peter Schmieder
AG Solution NMR

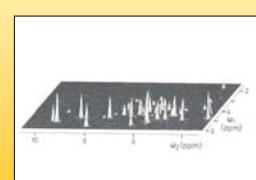
Multidimensional NMR-spectroscopy

23/46

FMP


Solution state NMR

Peter Schmieder
AG Solution NMR


Multidimensional NMR-spectroscopy

24/46

1D-NMR:
2 axis
intensity vs. frequency

2D-NMR:
3 axis
intensity vs. frequency (1) vs. frequency (2)

FMP

Solution state NMR

Peter Schmieder
AG Solution NMR

Multidimensional NMR-spectroscopy

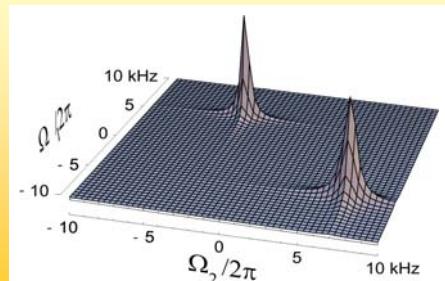
25/46

The two major advantages of multidimensional NMR are:

Improved resolution: Signals are spread over a surface (2D) or in a three-dimensional space (3D, 4D)

Magnetization transfer: Signals result from the interaction between nuclei. That can be interactions through bond (via J -coupling) or through space (via NOE).

Taken together this eases the interpretation and the assignment of the spectra considerably

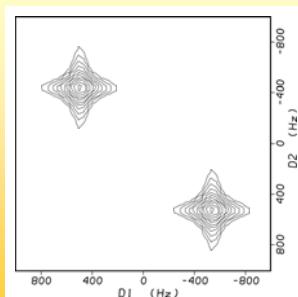

Solution state NMR

Peter Schmieder
AG Solution NMR

Multidimensional NMR-spectroscopy

26/46

2D spectra have two frequency axes



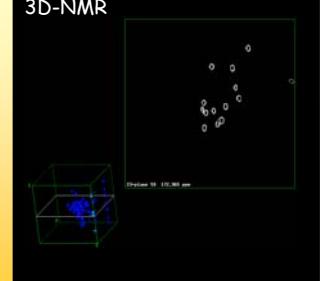
Solution state NMR

Peter Schmieder
AG Solution NMR

Multidimensional NMR-spectroscopy

27/46

For analysis of the data the spectra are converted in contour plots

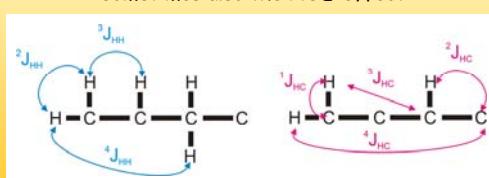

Solution state NMR

Peter Schmieder
AG Solution NMR

Multidimensional NMR-spectroscopy

28/46

3D-NMR


Solution state NMR

Peter Schmieder
AG Solution NMR

Multidimensional NMR-spectroscopy

29/46

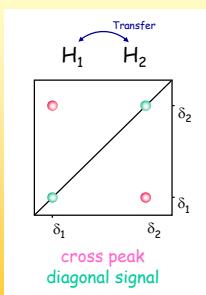
The most important part of a 2D experiment is the transfer of magnetization from one nucleus to another taking place between the recording of the two frequencies, in most cases scalar coupling is used, sometimes also the NOE-effect

Solution state NMR

Peter Schmieder
AG Solution NMR

Multidimensional NMR-spectroscopy

30/46


homonuclear spectra

Transfer of magnetization takes place between like nuclei. Both axis exhibit the chemical shift of the same type of nucleus. If a transfer has taken place, the signal has different frequencies in the two dimensions:

cross peak

If no transfer has taken place, the shifts are the same in both dimensions:

diagonal signal

Solution state NMR

Peter Schmieder
AG Solution NMR

Multidimensional NMR-spectroscopy
31/46

heteronuclear spectra

Transfer of magnetization takes place between nuclei of different types. The two axis show the chemical shift of the respective type of nucleus. If a transfer has taken place, a signal appears at the intersection of the two frequencies, without a transfer there is no signal.

FMP
Solution state NMR
Peter Schmieder
AG Solution NMR

Multidimensional NMR-spectroscopy
32/46

A DQF-COSY is a homonuclear experiment and accomplishes a transfer via scalar coupling, usually via not more than three bonds

FMP
Solution state NMR
Peter Schmieder
AG Solution NMR

Multidimensional NMR-spectroscopy
33/46

A TOCSY also accomplishes a transfer via scalar coupling through whole spin systems. But if there is no coupling there is no transfer (e.g. more than three bonds between protons)

FMP
Solution state NMR
Peter Schmieder
AG Solution NMR

Multidimensional NMR-spectroscopy
34/46

Besides the transfer via scalar coupling there is the possibility to transfer via the NOE-effect, i.e. via a distance dependent interaction through space

NOESY ($\omega\tau_c > 1$)
NOESY ($\omega\tau_c < 1$)
FMP
Solution state NMR
Peter Schmieder
AG Solution NMR

Multidimensional NMR-spectroscopy
35/46

HMQC = Heteronuclear Multiple Quantum Correlation

A signal indicates a direct bond between the proton and the heteronucleus

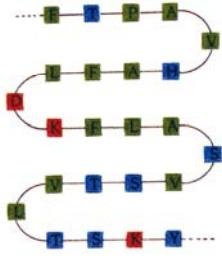
FMP
Solution state NMR
Peter Schmieder
AG Solution NMR

Multidimensional NMR-spectroscopy
36/46

HMBC = Heteronuclear Multiple Bond Correlation

A signal indicates a correlation via two, three or four bonds between the proton and the heteronucleus.

HMQC Transfer via $^1J_{HX}$
HMBC Transfer via $^nJ_{HX}$
FMP
Solution state NMR
Peter Schmieder
AG Solution NMR

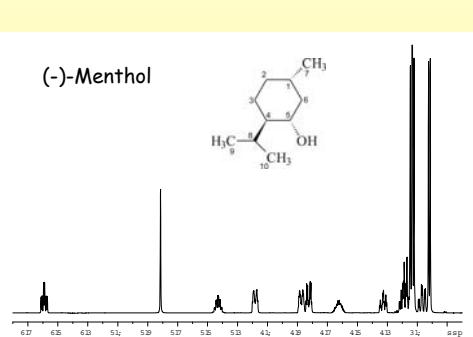
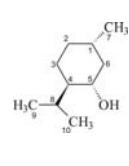

37/46 NMR-spectroscopy of proteins

Solution state NMR

Peter Schmieder
AG Solution NMR

38/46 NMR-spectroscopy of proteins

The major problem of protein NMR results from the fact that proteins are polymers, i.e. the repetition of almost identical subunits

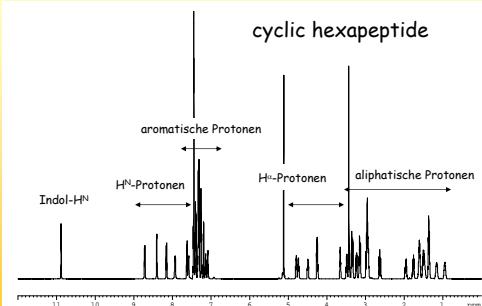



Solution state NMR

Peter Schmieder
AG Solution NMR

39/46 NMR-spectroscopy of proteins

(-)-Menthol

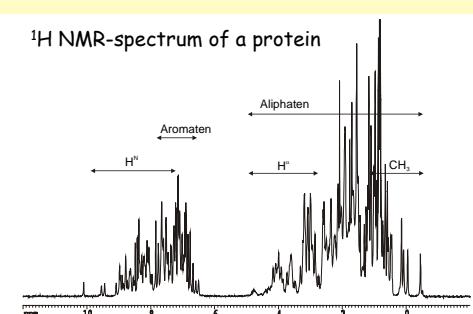


Solution state NMR

Peter Schmieder
AG Solution NMR

40/46 NMR-spectroscopy of proteins

cyclic hexapeptide

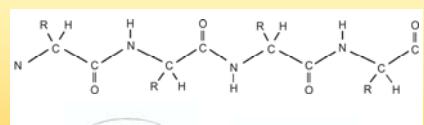
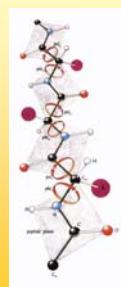


Solution state NMR

Peter Schmieder
AG Solution NMR

41/46 NMR-spectroscopy of proteins

^1H NMR-spectrum of a protein

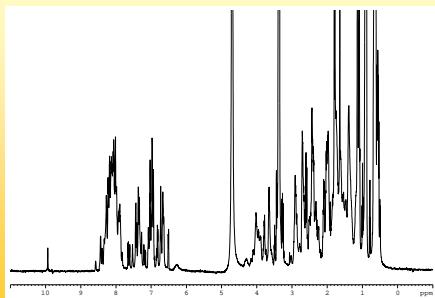



Solution state NMR

Peter Schmieder
AG Solution NMR

42/46 NMR-spectroscopy of proteins

Differences in chemical shifts can be produced by structure and the accompanying anisotropy effect

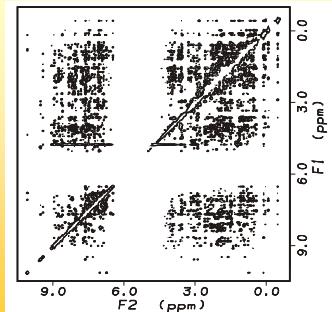

Solution state NMR

Peter Schmieder
AG Solution NMR

NMR-spectroscopy of proteins

43/46

^1H NMR-spectrum of an unfolded protein

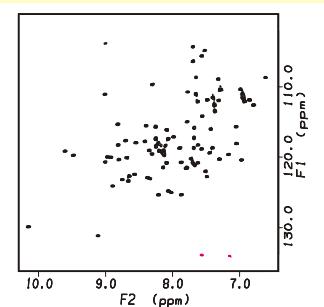

Solution state NMR

Peter Schmieder
AG Solution NMR

NMR-spectroscopy of proteins

44/46

Obviously
multidimesional
spectra are
mandatory for
proteins, either
homonuclear (e.g.
NOESY)....


Solution state NMR

Peter Schmieder
AG Solution NMR

NMR-spectroscopy of proteins

45/46

...or heteronuclear
(e.g. HSQC)

Solution state NMR

Peter Schmieder
AG Solution NMR

That's it

www.fmp-berlin.de/schmieder/teaching/autumn_school_2010.htm

Solution state NMR

Peter Schmieder
AG Solution NMR