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1. Backbone NMR experiments

Magnetization transfer > NOE
Magnetization transfer > J-coupling

"H/ 75N Correlation [2D]
HSQC or HMQC-type

HNCQO Experiment [3D)]
HNCA Experiment (3D)]

HN({CO)CA Experiment (3D)]




2. Chemical shift evolution

and evolve SIMULTANEQOUSLY during
‘every’ delay period (for all nuclei with transverse components)!
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3 effects are active during delays:
1. J-coupling
2. Chemical shift evolution

3. Relaxation (!]
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TSN chemical shift evolves during the ¢, period (which is incremented in
every scan). does evolve because magnetization is
safely ‘stored’ along z. however |5 refocused.




4. Chemical shift evolution (cont.)

The of your 2D (30) NMR spectrum in the indirect dimension(s]
["°N or "3C chemical shift evolution) will depend on the of the chosen
(NUMBER OF POINTS i.e. TD (128, 258 etc.))

I | ‘ ‘ ._I Setting the SWEEP-WIDTH [SWH] to a

value that is appropriate for the expected

chemical shift range choosing the right

NUMBER OF POINTS [TD] can greatly

reduce the time requirements of your NMR
ﬂ measurements!

The (on Bruker
machines]) is a complex number [i.e.
real+imaginary). Meaning that the actual
number of increments that you record is
only HALF the number of points that you
define (real data points].




HNCA (+HNCA)

HN(CO)CA

(1) Strong J-coupling > Short delays
(2) Weak J-coupling > Long delays
(remember the INVERSE relationship
L.e.1/2d,1/4d etc.)

(1) Short delays > Little relaxation
(2] Long delays > More relaxation




)
o

O

| | T
1 2 3

1H (acquisition)

Figure 6.2. HNCO. (b) Schematic spectrum corresponding to the three
amino acid region shown in Figure 4.2b: each amino acid produces a single
peak (dark blue) along the *C’ dimension (into the page), directly behind
the corresponding HSQC peak (light blue) of Figure 4.2b (the light blue
peaks do not appear in this spectrum and are only included as a guide).
The position of the peaks along the *C’ dimension specifies the chemical
shift of C’(i-1) that was encoded during t;.

Starting from a 2D "H "°N correlation ([HSQAC) C’ Chemical Shift Evolution
yields the

The 3D HNCO is the MOST SENSITIVE of all the
for protein bb-assignment.
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The -N H, term is subject to 4 J-couplings:
1) "

2) e

3] 1'J|\|Coc[i] clale E'JNCoc[i-’I]

(1) During 1/(2 "y NH,>N,

(2] Simultaneous 180deg. pulses on N
and C’ keep "Jy active during the
entire 2T, period > setting 2T to
1/[2 1JNC’] Nx> NyC’z

(3) No 180deg. pulse on Cot > no Jy,
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(3) " cogy 8N = dngoging ‘ ’

must be suppressed :Itl/e t/2 I l

(4] Nitrogen chemical I
shift must evolve! |
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(1) Simultaneous 180deg.
pulses on N and C

(2) Decoupling "H, only
allow 1,/2 'J,, period

~te/2 l tto/2 [Tdecaotplg

(3] " ncogy @M ey
suppressed by 180deg.

(4) °N chemical shift I
evolution via Constant |
Time (CT) procedure!
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Figure 6.3. HNCA. (b) Schematic spectrum corresponding to the three
amino acid region shown in Figure 4.2b: each amino acid produces two
peaks (dark blue) along the *Ca dimension (into the page), directly behind
the corresponding HSQC peak (light blue) of Figure 4.2b (the light blue
peaks do not appear in this spectrum and are only included as a guide].
The position of the peaks along the *Ca dimension specify the chemi-
cal shifts of the Ca() and Ca(i-1) spins encoded during t;. The Cao()) peak is
generally the more intense of the two.

The 3D HNCA yields chemical shift information about and
> Provides the basis for CONNECTIVITIES between individual protein residues.
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Figure 6.4. HN(CO)CA. (b) Schematic spectrum corresponding to the three
amino acid region shown in Figure 4.2b: each amino acid produces one
peak (dark blue) along the *Ca dimension (into the page), correspond-
ing to the generally weaker Co(i-1) peaks from Figure 6.3b. (The light blue
peaks do not appear in this spectrum and are only included as a guide.)

Starting from a 2D "H "°N correlation (HSAC) Co ,; Chemical Shift Evolution
yields the
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2T\ 1s different to 2T

(1) No "N 180deg. pulse
during magnet. transfer

G’ to Coy; 4,> "y evolution ignored
-C' N, term remains anti-phase >
double anti-phase term [-C’, N, ]

at the end of 2T ..




7. 3D HN[C
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(3] CT is used for
1SN chemical shift
encoding
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8. .... Eh, vollal

A back-bone assigned protein allows you to do a
great deal of simple, but highly useful NMR
experiments!

N (ppm)




