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Outline:

- Basic understandings:

Relaxation
Chemical exchange

- Mapping interactions:

Chemical shift mapping (fast

exchange)
Linewidth analysis (slow
exchange)

Cross saturation transfer

Transfer NOE/STD NMR

Half filter exepriments/isotope labeling



Monitoring protein:protein interactions:
Capitalizing on chemical shift and relaxation rate changes

In the absence of of an applied rf field, the Bloch equations are defined as:
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In the case of chemical exchangeitis :
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Transitions between states in a two-spin system
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Relaxation times depend on the overall tumbling time of
molecules which is proportional to molecular weight

Biochemistry, Vol. 28, No. 23, 1989 BkT



T, relaxation
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Measuring T1 from inversion recovery pulse sequence
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Measuring T1 relaxation times
Inversion Recovery
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Inversion Recovery - Measure NMR Intensity as a function
of the delay time T and fit to an exponential function

M;//

Inversion recovery pulse sequence for measuring T,

observation relaxation time
channel of at least 5T,

180% 90°xfid acquisition

Mz = Mo (1- 2e V1)

Adopted from Roy Hofmann,
Hebrew University



The inversion recovery experiment yields T1 values for
different signals that may have different relaxation times

residual CH; group

H,O

ppm1.6 15 1.4 1.3 1.2

Example: Ethylbenzene in CDCl,



T, relaxation leads to line-width broadening
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Spin-echo pulse sequence for measuring T,

channel of at least 5T,

180% ﬁd acquisition
T

observation relaxation time I
O x

1.4 1.3 1.2

Example: Ethylbenzene in CDCl,



Linewidth depends on transverse relaxation

S(w) = Re Fs*{t) exp(-iot)dt

(=)
absorpticn

=v(w) + iv(w)

@ .Understanding NMR spectroscopyx by J. Keeler®



Chemical exchange complicates matters
<:> K @ Conformational
equilibrium
@ Ky @ Chemical

O equilibrium

temp

broad resonance

Slow exchange - two distinct resonances

Fast exchange - one
sharp average resonance

Intermediate exchange - one



Linewidth simulations for slow exchange interactions
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Changing R, of the bound state: 500,
250,100,50 and 23 s-1. No chemical shift
difference of free and bound state

Same parameters used as above. R, (free)
is 23 st and k4 = 200 s. The fraction of
free protein is 0.5.

R, (bound) is set to 250 st and chemical
shifts are varied : 500, 250, 100, 50 and 23 Hz
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Published in: Hiroshi Matsuo; Kylie J. Walters; Kenta Teruya; Takeyuki
Tanaka; George T. Gassner; Stephen J. Lippard; Yoshimasa Kyogoku;
Gerhard Wagner; J. Am. Chem. Soc. 1999, 121, 9903-9904.



What type of exchange ?
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Mapping protein interactions:



Chemical shift as a measure of chemical environment :

difference in precession frequency bhetween two nuclei

§ =

operating frequency of the magnet

< Dreshield shield >
< Downfield Upfield >

Reference against: 2,2-dimethyl-2-silapentane-5-sulfonic acid (DSS) /Si\/\/S g



Predicting protein chemical shifts via CSI Protein Flexibility

21— Random Coil Index (RCl) /| |
|~ Molecular Dynamics RMSD I \
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Berjanskii & Wishart,
. . Nat Prot Is1, - 683 - 688 (2006
Structure refinement via CSI arure Frotocols (2006)
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Chemical shift changes :
a single non-disruptive mutation

Wit(rot)/Y33A(grin)
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Chemical shift changes :
two non-disruptive mutations

Wi(rot)/Y33AWS8R(blau)
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Chemical shift changes:Fast exchange:
GYF binding to spliceosomal SmB ——

Wit(rot)/Wt_SmB(grun)
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Binding of the single-site mutant

Y33A(rot)/Y33A _SmB(grun)
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(Non-)Binding of the double mutant

Y33AWS8R(rot)/Y33AWS8R _SmB(grin)
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Slow exchange: Linewidth analysis can be used to map binding sites
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Transferred NOEs for determination of bound ligand structures
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STD-NMR can be used to observe binding in complex mixtures
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Cross saturation: detection of *°NH groups of a deuterated acceptor protein

Takahashi et al., Nat. Struct. Biol.(2000)

CROSS SATURATION

Variant: Selective protonation of an otherwise deuterated donor protein
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Igarashi et al., JACS 2008
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|dentification of donor residues close in space to affected acceptor amides
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|dentification of donor and acceptor interfaces
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Determining the structure of protein:ligand complexes

H 1200 1/2Jyy receiver

Half-filter :

X
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Wider et a2, JACS, 1990
Folmer et al., J Biomol. NMRE 1995
..to be continued in later sessions



Paramagnetic relaxation enhancement
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Hy I3 (57

At higher salt concentrations, T, relaxation data cannot be
explained by the specific complex
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Model system:
Homeodomain of human
HOXD9 in complex with a
24-base-pair DNA duplex

Incorporation of conjugated
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Low-affine interactions likely contribute to formation of the specific complex

b Target search process
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