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A. Limitations to Spatial Information

Michael Faraday
“Experimental Researches in Electricity”, London 1839



Electromagnetic Induction
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Basic Experiment

RF in signal out

transmit-receive coil

What signal do we get from the voxel ?



Principle of Reciprocity, Signal Intensity

The emf induced in a RF probe by magnetic moment M from
a voxel ΔV at a specific position is determined by the magnetic
fi ld li d B h i i h i flfield amplitude B1 at that position when unit current flows
through the coil,
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Noise

N i t h ti fl t ti f i d d lt t d bNoise are stochastic fluctuations of induced voltage generated by 
thermal motion of charges and currents  

kfTR4U2 =Nyquist, mean quadratic voltage kfTR4Un =yq , q g
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f,    spectral bandwidth
TC, coil temperatur
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coil sample/body
RC, coil resistance
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Sample / Body Resistance

Sample in transmit

“resistance=mean powerdissipation / (mean current)2”

Sample in transmit-
receive circuit 
causes enery loss
“Joule heating”Joule heating

Unit ac of frequency ω generates B1 which
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Coil Resistance

hi d d ti f l t i l tti f th d thindered motion of electrons in lattice of the conductor
confined to skin on the surface of the coil (“skin – effect”)

( )C0rC P2
LTR ηρμωμ=effective coil resistance

single layer solenoid
321

Cθ
L,       conducter length
P conductor circumfence geometry factor for coilP,       conductor circumfence
μrμ0,   permeability
ρ(TC), resistivity
η=5, correction to skin-effect for tight winding

geometry factor for coil

η 5,   correction to skin effect for tight winding



Thermal Equilibrium Magnetization, total S/N

Boltzmann distribution of population of energy levels
generates excess magnetization in thermal equilibrium
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“Curie law” for ambient TSCurie law  for ambient TS

N,  number of spins in ΔV     γ,   gyromagnetic ratio
I,   spin quantum number       B0, Zeeman field strengthp q 0 g
,  Planck constanth
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S/N in NMR and MRI

Standard conditions (room temperature, 1 Tesla, 
1 Liter physiological saline solution, solenoid, …)

1H, S/N~1:       N~5 1018

1 mm3 water:   N=6.7 1018

small sample ~cm3: RC>>RS large object: RC<<RS

in vitro NMR in vivo MRI
small sample, cm :  RC>>RS large object:  RC<<RS
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• S/N increases fast with Larmor frequency
or high Zeeman field 

C li l t i h l

• only water can be reasonably
measured

R l ti li it d t 1 3• Cooling electronics helps 

• Signal averaging, 
heteronuclear labelling

• Resolution limited to ~ 1 mm3

• Restricted experiment time,
no labelling possible, …heteronuclear labelling, … no labelling possible, … 



Hyperpolarization

Non-thermal initial polarization may lift the limitations of MRI, S/N~M0

Dynamic nuclear polarization K     1.1T,660/ pH1e ≈≈γγ Curie law !

Parahydrogen induced polarization ( )+−−−+
2

1
H2 in singlet state 100%

2

Laser polarization
Nuclear spins of 129Xe, 3He gain excess 
magnetization ~20% by collisions with 
optically excited Ionsoptically excited Ions



B. Localized Information

• surface coil: high S/N (small θS), inhomogeneous, poor localization

• relaxation behavior:
N3,           number of voxels 
T1, longitudinal relaxation time

*

• relaxation behavior:

T2, (T2
*),  transverse (effective) relaxation time

τ,              duration of experiment

individual sampling   τ ~ N3 T1 ~ 36 h at T1 = 0.5 s, N=64

line wise sampling     τ ~ N2 T1 ~ 1/2h

plane wise sampling   τ ~ N T1 ~  1/2min 
or  ~  1/2h at resolution N=256

Selective  excitation of the magnetization in a plane of the object.



Zeeman Field Gradients
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z-gradient y-gradient x-gradient 

Local precession by gradient offset 
in rotating frame:
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Selective Excitation

Transverse magnetization in rotating frame after pulse 
of length τ, amplitude B1 along x-axis in
small flip angle approximation
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“slice profile” = “FT of pulse shape”

Z
BWG
Δγ

=Gradient strength to excite slice of width ΔZ 
by RF pulse of bandwidth BW



Encoding of Spatial Dimension

Gradient along one direction r (1D):
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Gradient along one direction r (1D):

sample

Projection of Magnetization along r is FT of Signal as function of k.

N signal samples at tGk rr Δγ=Δ

rk/2OVF Δπ=Total spatial dimension resolution:
S ti l l ti (t h i ll ) FOV/N

“field of view”
and from Nyquist Theorem:

Spatial resolution (technically):       FOV/N

Independent gradients along two directions x, y (2D):
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sampling 2D k-space
with gradient-echo sequence



Image Contrast
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white matter light,
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Tr = 450 ms

contrast inversion

white matter dark,
grey matter light

Tr

grey matter light
Tr = 3.3 s



MR Imaging = localized determination of MR parametersMR Imaging  localized determination of MR parameters

… which need medical interpretation …

… so, let’s practice …


