

Magnetic Resonance Imaging

II. MRI Technology

A. Limitations to Spatial Information

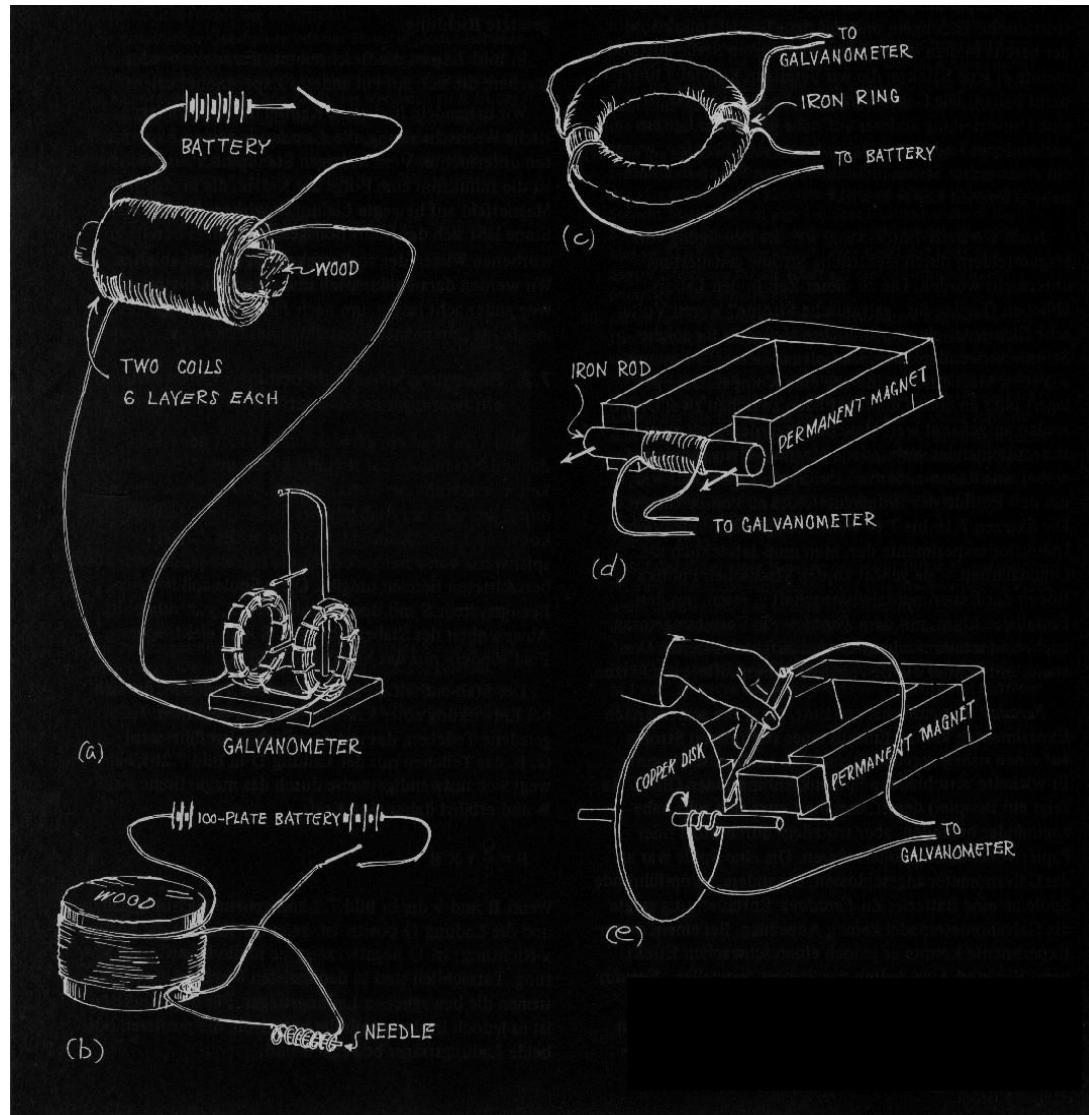
B. Localized Information

Lorenz Mitschang

Physikalisch-Technische Bundesanstalt, www.ptb.de

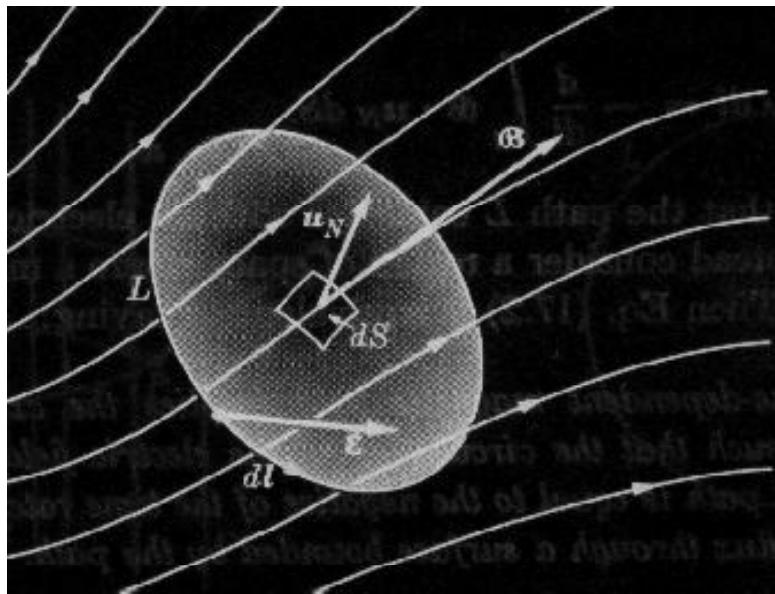
29th June 2009

A. Limitations to Spatial Information



Michael Faraday
“Experimental Researches in Electricity”, London 1839

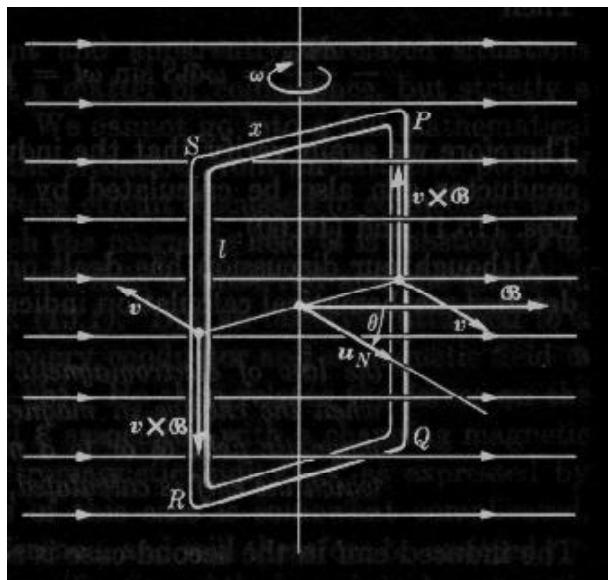
Electromagnetic Induction



$$\oint \vec{E} d\vec{l} = - \frac{d}{dt} \int_S \vec{B} d\vec{S}$$

electromotive
force

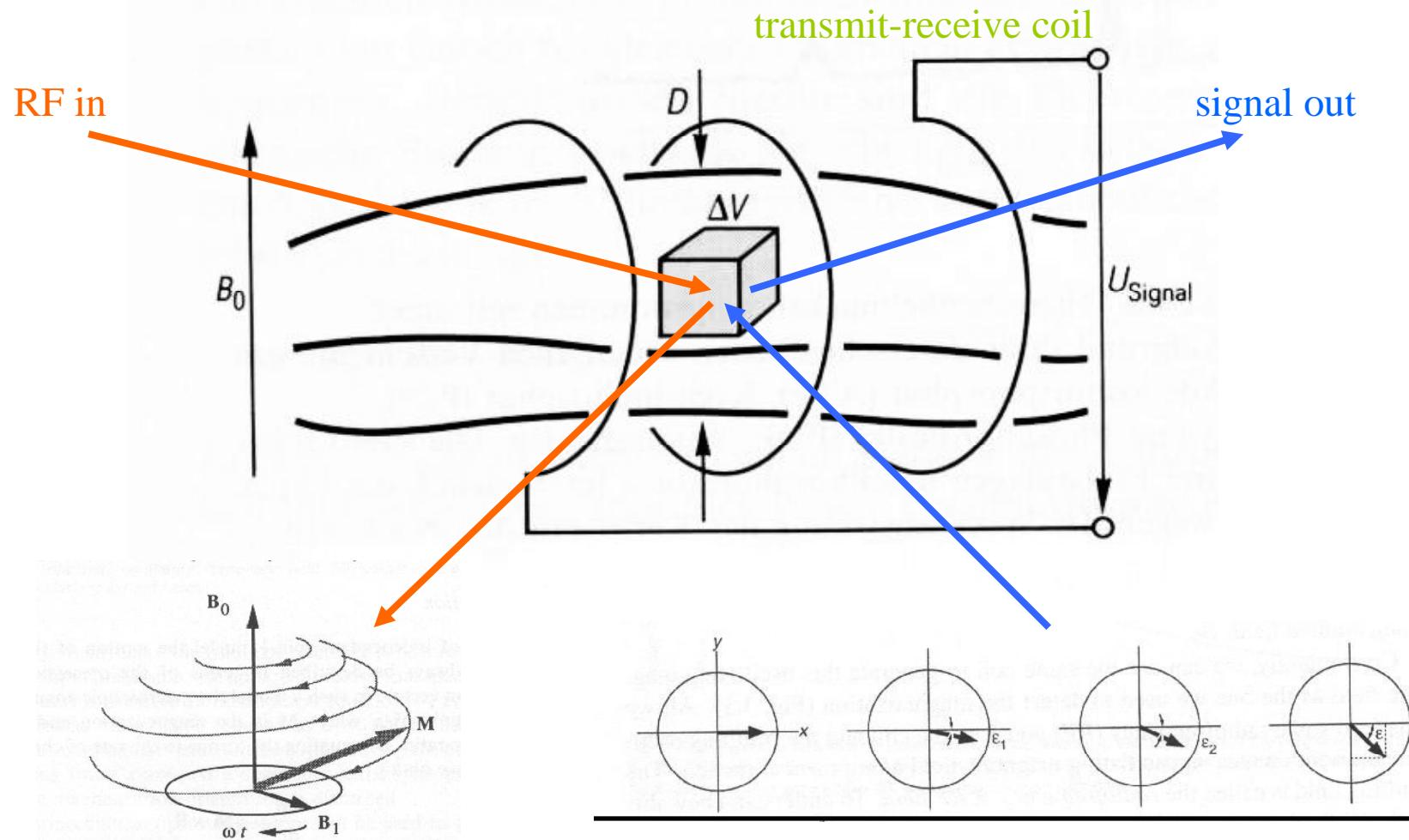
rate of change of
magnetic flux



$$U_{\text{ind}} = - \frac{d\Phi}{dt}$$

negative sign indicates “resistance” to change
Lenz’s Rule

Basic Experiment



What signal do we get from the voxel ?

Principle of Reciprocity, Signal Intensity

The emf induced in a RF probe by magnetic moment M from a voxel ΔV at a specific position is determined by the magnetic field amplitude B_1 at that position when unit current flows through the coil,

$$\Delta U_{\text{ind}} = -\frac{d}{dt}(\vec{B}_1 \cdot \vec{M})$$

$$\vec{M} = M_0 \begin{pmatrix} \cos \omega t \\ \sin \omega t \\ 0 \end{pmatrix}; \quad \vec{B}_1 = \begin{pmatrix} B_{1X} \\ B_{1Y} \\ B_{1Z} \end{pmatrix}; \quad B_{1X} = B_{1Y} = B_{\text{tr}}$$

maximum signal amplitude

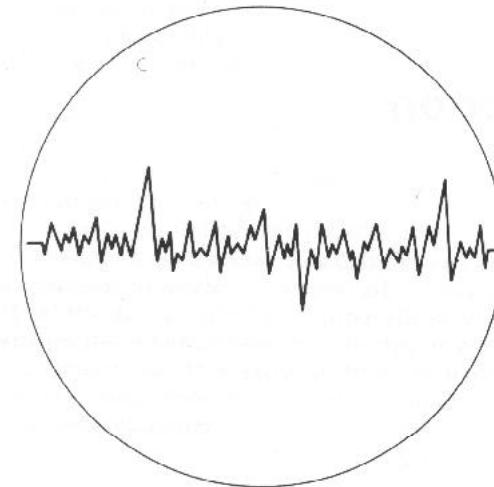
$$\Delta U_{\text{ind max}} \approx \omega M_0 B_{\text{tr}}$$

Noise

Noise are stochastic fluctuations of induced voltage generated by thermal motion of charges and currents

Nyquist, mean quadratic voltage

$$\langle U_n^2 \rangle = 4k f T R$$



k , Boltzmann's constant

f , spectral bandwidth

T_C , coil temperatur

R_C , coil resistance

T_S , sample/body temperature

R_S , sample/body resistance

$$T R = \underbrace{T_C R_C}_{\text{coil}} + \underbrace{T_S R_S}_{\text{sample/body}}$$

coil sample/body

signal/noise from ΔV

$$\frac{U_{\text{ind max}}}{\sqrt{\langle U_n^2 \rangle}} \equiv \frac{S}{N} \approx \frac{\omega M_0 B_{\text{tr}}}{\sqrt{4k f (T_C R_C + T_S R_S)}}$$

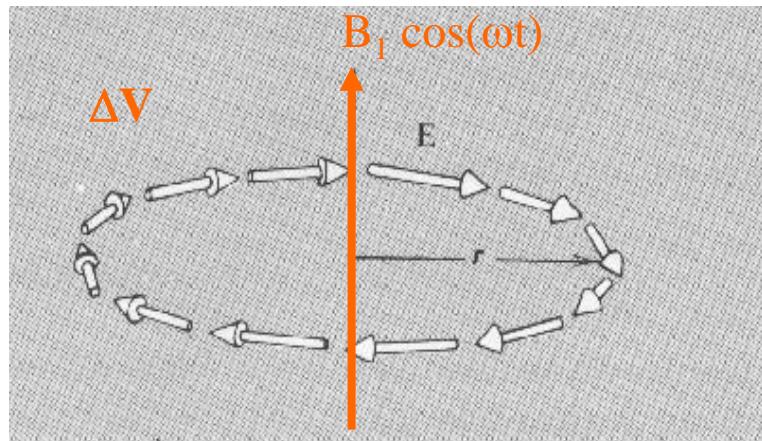
Sample / Body Resistance

Sample in transmit-receive circuit causes energy loss
“Joule heating”

“resistance=mean powerdissipation / (mean current)²”

Unit ac of frequency ω generates B_1 which induces E in sample/body of conductivity σ

$$R_S = \frac{1}{2} \int_{\text{sample}} \sigma E^2 dV$$

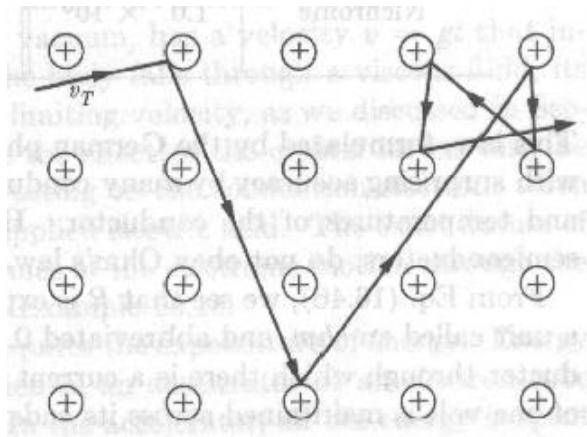


$$B_1 \text{ homogeneous in small voxel} \quad \vec{E} = \frac{\omega}{2} \vec{r} \times \vec{B}_1$$

$$R_S = \frac{1}{4} \sigma \omega^2 \underbrace{\int_{\text{sample}} (\vec{r} \times \vec{B}_1)^2 dV}_{\theta_S}$$

geometry factor for coil and object

Coil Resistance



hindered motion of electrons in lattice of the conductor
confined to skin on the surface of the coil (“skin – effect”)

effective coil resistance
single layer solenoid

L , conductor length

P , conductor circumference

$\mu_r \mu_0$, permeability

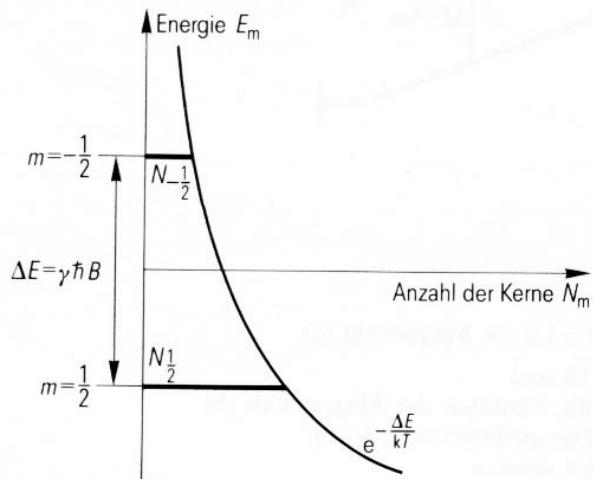
$\rho(T_C)$, resistivity

$\eta=5$, correction to skin-effect for tight winding

$$R_C = \sqrt{\omega \mu_r \mu_0 \rho(T_C)} \frac{L}{\underbrace{\sqrt{2P}}_{\theta_C}} \eta$$

geometry factor for coil

Thermal Equilibrium Magnetization, total S/N



Boltzmann distribution of population of energy levels generates excess magnetization in thermal equilibrium

$$M_0 = N \gamma^2 \hbar^2 I(I+1) B_0 / 3kT_S$$

“Curie law” for ambient T_S

N , number of spins in ΔV γ , gyromagnetic ratio
 I , spin quantum number B_0 , Zeeman field strength
 \hbar , Planck constant

Total S/N from voxel ΔV

$$\frac{S}{N} \approx \frac{\omega^2 N \gamma \hbar^2 I(I+1)}{\sqrt{T_C T_S^2 \sqrt{\omega \mu_r \mu_0 \rho} \theta_C + T_S^3 \frac{1}{4} \sigma \omega^2 \theta_S}} \frac{B_{tr}}{6\sqrt{k^3 f}}$$

S/N in NMR and MRI

Standard conditions (room temperature, 1 Tesla,
1 Liter physiological saline solution, solenoid, ...)

^1H , S/N~1: $N \sim 5 \cdot 10^{18}$
 1 mm^3 water: $N = 6.7 \cdot 10^{18}$

in vitro NMR

small sample, $\sim \text{cm}^3$: $R_C \gg R_S$

$$\frac{S}{N} \sim \frac{\omega^{7/4} N \gamma I(I+1)}{\sqrt{T_C} T_S}$$

- S/N increases fast with Larmor frequency or **high Zeeman** field
- **Cooling electronics** helps
- Signal averaging, heteronuclear labelling, ...

in vivo MRI

large object: $R_C \ll R_S$

$$\frac{S}{N} \sim \frac{\omega N \gamma I(I+1)}{T_S^{3/2}}$$

- **only water** can be reasonably measured
- **Resolution limited** to $\sim 1 \text{ mm}^3$
- Restricted experiment time, no labelling possible, ...

Hyperpolarization

Non-thermal initial polarization may lift the limitations of MRI, $S/N \sim M_0$

Dynamic nuclear polarization

$\gamma_e / \gamma_{^{1H}} \approx 660$, $T_p \approx 1.1 K$ Curie law !

Parahydrogen induced polarization

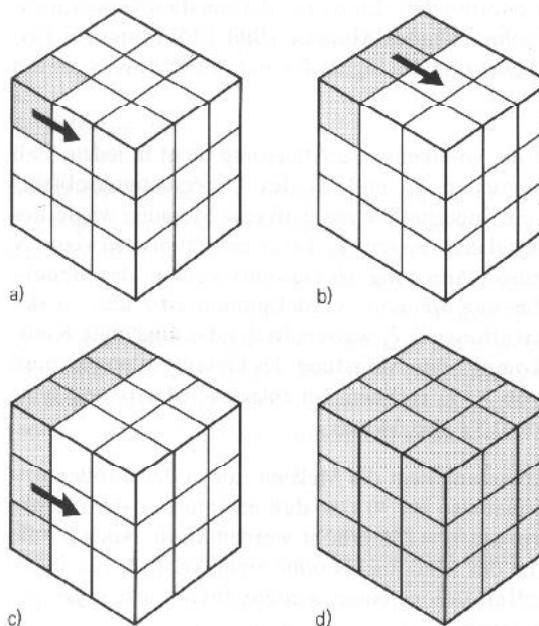
$\frac{1}{\sqrt{2}} (\langle + | \langle - | - | - \rangle | + \rangle)$ H_2 in singlet state 100%

Laser polarization

Nuclear spins of ^{129}Xe , 3He gain excess magnetization $\sim 20\%$ by collisions with optically excited Ions

B. Localized Information

- surface coil: high S/N (small θ_S), inhomogeneous, poor localization
- relaxation behavior:



N^3 , number of voxels
 T_1 , longitudinal relaxation time
 $T_2, (T_2^*)$, transverse (effective) relaxation time
 τ , duration of experiment

individual sampling $\tau \sim N^3 T_1 \sim 36$ h at $T_1 = 0.5$ s, $N=64$

line wise sampling $\tau \sim N^2 T_1 \sim 1/2$ h

plane wise sampling $\tau \sim N T_1 \sim 1/2$ min
or $\sim 1/2$ h at resolution $N=256$

Selective excitation of the magnetization in a plane of the object.

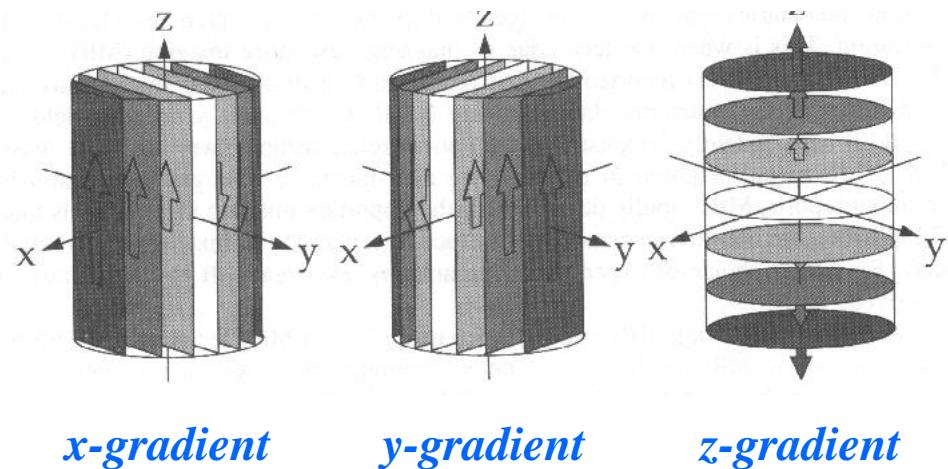
Zeeman Field Gradients

Field changes linearly with position

$$\vec{B}(\vec{r}) = \vec{B}_0 + \vec{G} \cdot \vec{r}$$

Larmor frequency changes accordingly

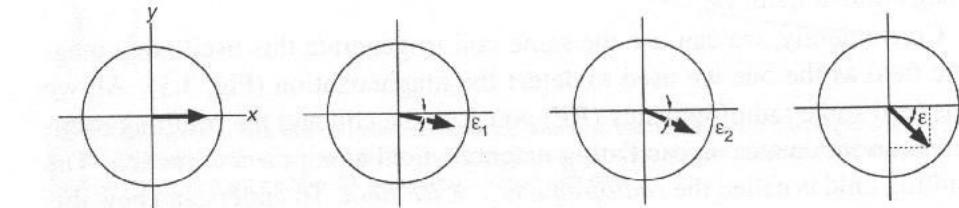
$$\vec{\omega}(\vec{r}) = \gamma \vec{B}_0 + \gamma \vec{G} \cdot \vec{r}$$



Local precession by gradient offset in rotating frame:

“*k*-space”

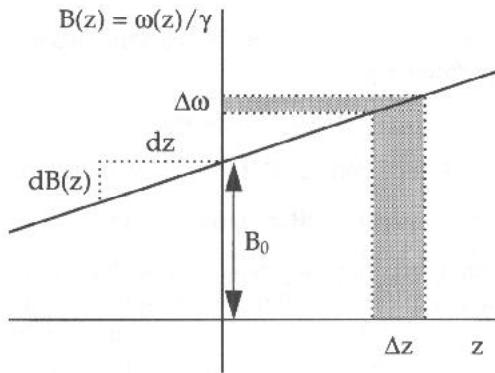
$$\vec{k}(t) = \gamma \int_0^t \vec{G}(t') dt'$$



$$M_{\perp}(\vec{r}, t) = M_{\perp}(\vec{r}, 0) e^{-i \vec{k}(t) \cdot \vec{r}}$$

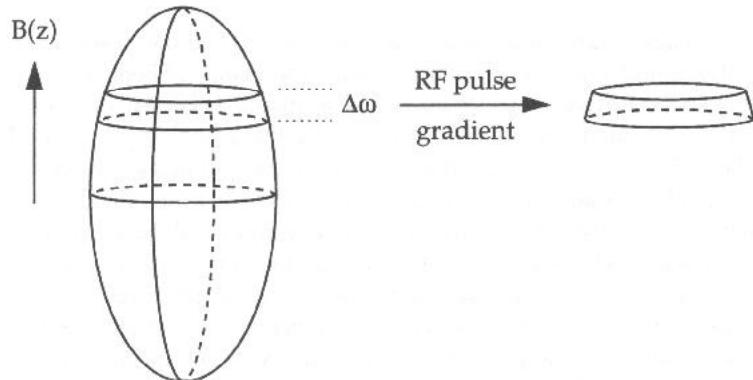
Linear correlation of
resonance/precession frequency and spatial position

Selective Excitation



Transverse magnetization in rotating frame after pulse of length τ , amplitude B_1 along x-axis in small flip angle approximation

$$M_{\perp}(\vec{r}, \tau) \approx \gamma M_0(\vec{r}) \int_0^{\tau} B_1(t) e^{-\gamma \vec{G} \vec{r} t} dt$$



“slice profile” = “FT of pulse shape”

Gradient strength to excite slice of width ΔZ by RF pulse of bandwidth BW

$$G = \frac{BW}{\gamma \Delta Z}$$

Encoding of Spatial Dimension

Gradient along one direction r (1D):

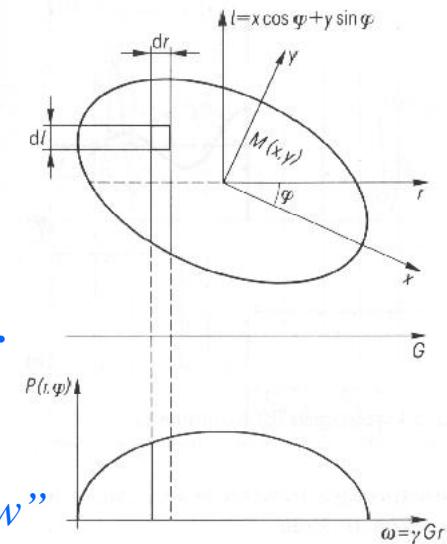
$$M_{\perp}(t) = \int_{\text{sample}} M_{\perp}(\vec{r}, 0) e^{-i\vec{k}(t) \cdot \vec{r}} dV = \int P(r) e^{-ik_r(t)r} dr$$

Projection of Magnetization along r is FT of Signal as function of k .

N signal samples at $\Delta k_r = \gamma G_r \Delta t$ and from Nyquist Theorem:

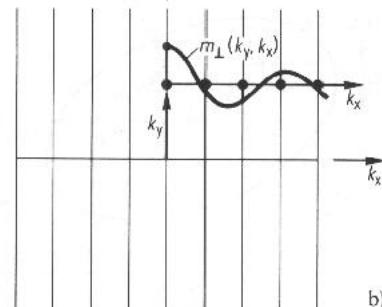
Total spatial dimension resolution: $\text{FOV} = 2\pi / \Delta k_r$ “field of view”

Spatial resolution (technically): FOV/N



Independent gradients along two directions x, y (2D):

$$M_{\perp}(k_x, k_y) = \int M_{\perp}(x, y) e^{-ik_x(t)x - ik_y(t)y} dx dy$$



← sampling 2D k-space
with gradient-echo sequence →

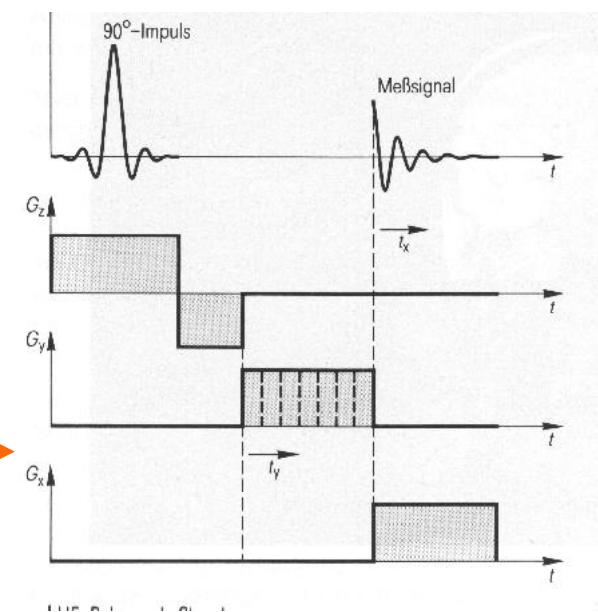
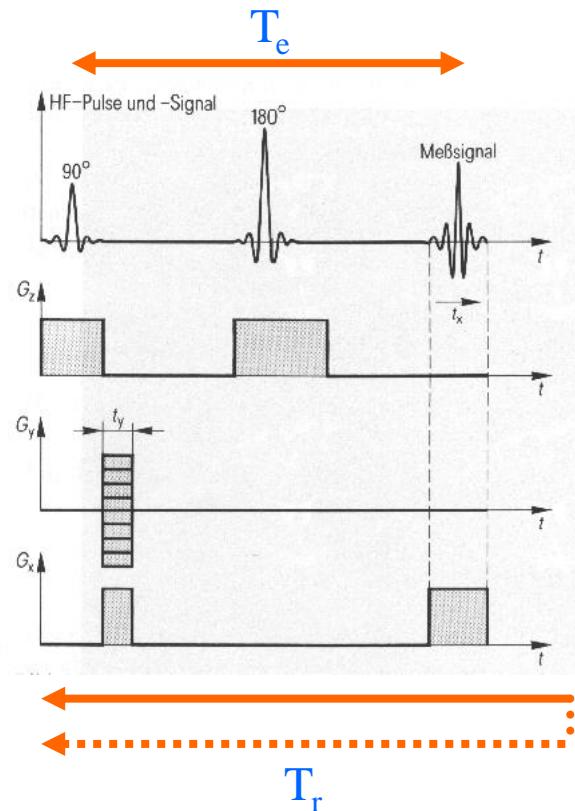


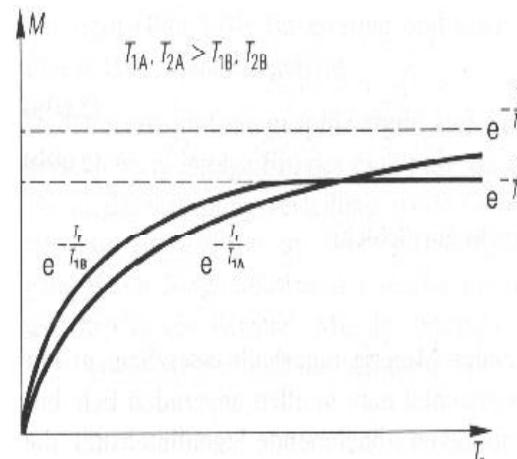
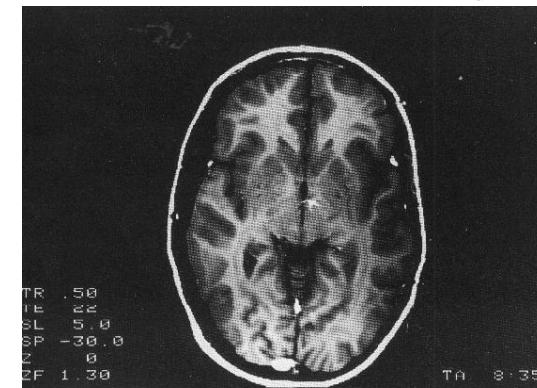
Image Contrast

Relaxation times weighted local magnetization

$$M_{\perp}(x, y) = \rho(x, y) e^{-\frac{T_e}{T_2}} \left(1 - e^{-\frac{T_r}{T_1}} \right)$$

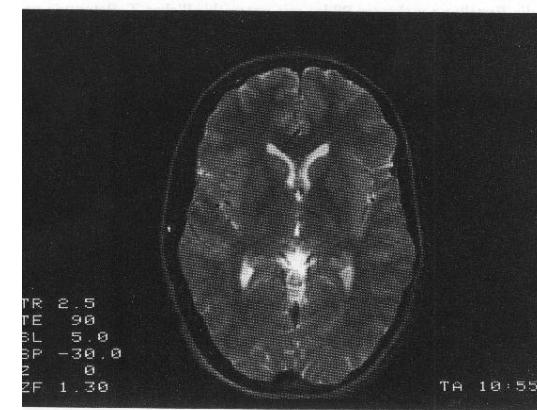


white matter light,
Grey matter dark
 $T_r = 450$ ms



contrast inversion

white matter dark,
grey matter light
 $T_r = 3.3$ s



MR Imaging – localized determination of MR parameters

... which need medical interpretation ...

... so, let's practice ...

