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Complex Numbers

z = x + i y x , y ∈ R
z∗ = x − i y conjugate

z z∗ = x2 + y2 = |z |2 0 ≤ |z | module

Polar representation: x = r cos θ
(r = |z | , θ) y = r sin θ

z = r(cos θ+i sin θ) = re iθ (L. Euler 1748)

Rotate z by φ with w = e iφ : w · z = e iφ · re iθ = re i(θ+φ)

Exercise

Prove:

i 4z = z

e iπ + 1 = 0
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Circular Motion

Rotation in Gaussian plane with
constant angular speed
ω = θ

t = 2π
T −→ θ = ωt

x(t) = re i(θ+θ0) = (re iθ0)e iωt

x(t) = ae iωt = a(cosωt + i sinωt)

cosωt = e iωt+e−iωt

2

sinωt = e iωt−e−iωt

2i

Real oscillations consist of equal
contributions of positive and
negative frequency components.
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Cartesian Vectors

In 2D

r =

(
r1
r2

)
= r1ê1 + r2ê2

= r1

(
1
0

)
+ r2

(
0
1

)

r1 = rTê1 = (r1 r2)

(
1
0

)
, r2 = rTê2

In 3D

r =

r1
r2
r3

 = r1ê1 + r2ê2 + r3ê3

= r1

1
0
0

+ r2

0
1
0

+ r3

0
0
1


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2×2 Matrices

abT =

(
a1

a2

)
(b1 b2) =

(
a1b1 a1b2

a2b1 a2b2

)

Ab =

(
a11 a12

a21 a22

)(
b1

b2

)
=

(
a11b1 + a12b2

a21b1 + a22b2

)
bTA = (a11b1 + a21b2 a12b1 + a22b2)

AB =

(
a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

)

Determinant: det(A) =

∣∣∣∣a11 a12

a21 a22

∣∣∣∣ = a11a22 − a12a21

Inverse: A−1 =
1

det(A)

(
a22 −a12

−a21 a11

)
det(A) 6= 0
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2×2 Matrices (2)

Solve
Ax = λx

for linear independent eigenvectors x 6= 0
and eigenvalues λ:

det(A− λI) = 0

Characteristic polynomial for 2×2 matrix A

(λ− a11)(λ− a22)− a12a21 = 0

Exercise

Find eigenvalues for (
cos θ − sin θ
sin θ cos θ

)
Hint: use

√
−1 =i
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Pauli matrices

W. Pauli (1924): two-valued quantum degree of freedom

Represent r =

r1
r2
r3

 by

(
r3 r1 − ir2
r1 + ir2 −r3

)

Accordingly, standard basis vectors êi ∈ R3 are related to Pauli
matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)

Any r ∈ R3 can hence be represented as σ =
3∑

i=1

riσi , σ ∈ C2.

Exercise

Show σ2
i =

(
1 0
0 1

)
.

F. Eisenmenger Quantum Mechanics



Pauli matrices (2)

Eigenvalues det(σi − λI) = 0 → λ = ±1

Eigenvectors σix = λx

λ = 1→ x1 λ = −1→ x2

σ3 :

(
1
0

)
≡ |α〉

(
0
1

)
≡ |β〉

σ1 : 1√
2

(
1
1

)
= 1√

2
(|α〉+ |β〉) 1√

2

(
1
−1

)
= 1√

2
(|α〉 − |β〉)

σ2 : 1√
2

(
1
i

)
= 1√

2
(|α〉+ i |β〉) 1√

2

(
i
1

)
= 1√

2
(i |α〉+ |β〉)

with 〈ϕm|·|ϕn〉 ≡ 〈ϕm| ϕn〉 = (x∗m1
x∗m2

..)

xn1

xn2

..

 =

{
1, m = n
0, m 6= n
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Quantum Operators

Postulate

In quantum mechanics physical quantities (observables) are
represented by linear, Hermitean operators Q = Q†

(† - conjugate transpose).

Pauli matrices - projections of moment of electrons, protons etc.
in three perpendicular reference directions:

spin angular momentum S =
~
2

3∑
i=1

σi ~ ' 1.0546·10−27 g · cm2

s

spin magnetic moment µ = µ

3∑
i=1

σi µp ' 1.4·10−23 g · cm2

s2 · gauss
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Measurements and Quantum States

Postulate

In any measurement of an observable only eigenvalues εn of its
associated operator Q may be observed.

State of quantum (micro) system prepared for measurement of Q

|Ψ〉 =
∑
n

cn |ϕn〉 |ϕn〉 - eigenstate of Q

cn ∈ C - probability amplitude

〈Ψ| Ψ〉=
∑
m

∑
n

c∗mcn 〈ϕm| ϕn〉=
∑
n

|cn|2 = 1

Measurement: |ψ〉 → |ϕn〉 with probability pn = |cn|2
yielding Q = εn.

Exercise

Show state e iθ |Ψ〉 to be indistinguishable from |Ψ〉.
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Average of Physical Quantities

Postulate

The average value for observable Q obtained by measurements in
state |Ψ〉 is 〈Q〉 = 〈Ψ|Q |Ψ〉 .

〈Q〉 =
∑
m

∑
n

c∗mcn 〈ϕm|Q |ϕn〉 =
∑
m

∑
n

c∗mcnQmn

∆Q =
√
〈Q2〉 − 〈Q〉2 (uncertainty)

For Pauli matrices it can be shown: 〈σ1〉2 + 〈σ2〉2 + 〈σ3〉2 ≤ 1

Exercise

Compute 〈σ3〉 for |Ψ〉 = 1√
5

(|α〉+ 2 |β〉).
Provide 〈σ1〉, 〈σ2〉 for given 〈σ3〉 = −1.
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AB 6= BA

W.Heisenberg, P. Jordan, M. Born (1925)

[P,Q] ≡ PQ − QP = i~ → ∆P∆Q ≥ ~
2

Pauli-Matrices

[σ1,σ2] = 2iσ3 [σ2,σ3] = 2iσ1 [σ3,σ1] = 2iσ2

Proposition

For two physical quantities to be simultaneously measured with
arbitrary accuracy, their operators must commute: [A,B] = 0.

Consider
σ2 = (λ1σ1 + λ2σ2 + λ3σ2)2 = (λ2

1+λ2
2+λ2

3)I →
[
σ2,σi

]
= 0

Eigenvalues of σi : λ = ±1 → eigenvalue of σ2: 3
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Density Operator

Given ensemble of states |Ψj〉 each prepared with probability p̃j .

Probability to measure eigenvalue εn of observable Q:

pn =
∑

j

p̃jc
∗
ncn =

∑
j

p̃j 〈ϕn| Ψj〉 〈Ψj | ϕn〉 = 〈ϕn| ρ |ϕn〉

Density operator ρ ≡
∑

j

p̃j |Ψj〉 〈Ψj |

∑
n

pn =
∑
n

〈ϕn| ρ |ϕn〉 = Tr(ρ) = 1

〈
Q
〉
=
∑

j

p̃j 〈Qj〉 =
∑

j

p̃j 〈Ψj |Q |Ψj〉 =

∣∣∣∣∣use:
∑
n

|ϕn〉 〈ϕn| = I

∣∣∣∣∣
=
∑
n

∑
j

〈Ψj |Q |ϕn〉 〈ϕn| Ψj〉 =
∑
n

∑
j

〈ϕn| Ψj〉 〈Ψj |Q |ϕn〉

=
∑
n

〈ϕn| ρQ |ϕn〉 = Tr(ρQ)
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