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Measurement and Dynamics

Measurement of observable Q in quantum state |Ψ〉 =
∑

n cn |ϕn〉
yields one of its eigenvalues εn with probability |cn|2.
After the measurement the system remains in eigenstate |ϕn〉.

Postulate

In a closed quantum system the time evolution (dynamics) of
states is generated by the Hamiltonian H

i~d |Ψ(t)〉
dt = H |Ψ(t)〉 (E. Schrödinger, 1926)

with solution |Ψ(t)〉 = e−
i
~ Ht |Ψ(0)〉 (H = H†)

H time-independent: H |ψn〉 = En |ψn〉
|ψn(t)〉 = e−

i
~ Ent |ψn〉 “stationary states”
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Evolution of the Density Operator

ρ=
∑

i

pi |Ψi 〉 〈Ψi | =

∣∣∣∣∣∣|Ψ〉 =
∑

j

cj |ϕj〉

∣∣∣∣∣∣
=
∑

i

pi

∑
j ,k

c∗j ck |ϕj〉 〈ϕk | =
∑
j ,k

c∗j ck |ϕj〉 〈ϕk |

dρ
dt =

∑
i

pi

(
d |Ψi 〉

dt
〈Ψi |+ |Ψi 〉

d 〈Ψi |
dt

)
= 1

i~

∑
i

pi {(H |Ψi 〉) 〈Ψi | − |Ψi 〉 (〈Ψi |H)}

= 1
i~ (Hρ− ρH)

Conclusion

i~dρ
dt = [H,ρ] (Liouville - von Neumann equation)

with solution ρ(t) = e−
i
~ Htρ(0) e

i
~ Ht
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Spin dynamics: General case

Consider observable Q (= Q†) for states |Ψ(t)〉 (〈Ψ| Ψ〉 = 1, ∀t):
d〈Q〉
dt = d〈Ψ(t)|Q|Ψ(t)〉

dt = 1
i~ 〈Ψ(t)|QH−HQ |Ψ(t)〉+

〈
Ψ(t)

∣∣ dQ
dt

∣∣Ψ(t)
〉

→ d〈Q〉
dt = 1

i~ 〈[Q,H]〉+
〈

dQ
dt

〉
Proposition

Spin 1/2 magnetic moment µ in field B: H = −B · µ = −~γ
2 B · σ

With dσi
dt = 0: d〈σ1〉

dt = iγ
2 〈[σ1, (B1σ1 + B2σ2 + B3σ3)]〉

= γ(B3 〈σ2〉 − B2 〈σ3〉)
d〈σ2〉

dt = γ(B1 〈σ3〉 − B3 〈σ1〉)
d〈σ3〉

dt = γ(B2 〈σ1〉 − B1 〈σ2〉)

Conclusion

Evolution of average magnetic moment in field B
d〈µ〉

dt = γ 〈µ〉 × B
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Bloch equations: Relaxation

Relaxation: establish thermodynamic equilibrium of spin system due to its
interaction & energy exchange with (1) “lattice” in thermal motion (heat
reservior), and (2) neighbouring spins (direct dipolar coupling).

Magnetic moment of N spins (bulk magnetization): M =
N∑
n

µn

(1) Spin-lattice (“longitudinal”) relaxation: return equilibrium excess of
spins in “ground state” (M0 = n0Nµz , n0 ∼ 10−5) at rate 1

T1
:

dMz (t)
dt = γ [Mx(t)By (t)−My (t)Bx(t)] + M0−Mz (t)

T1

(2) Spin-spin (“transversal”) relaxation: x- and y -magnetizations vanish
at rate 1

T2
:

dMx (t)
dt = γ [My (t)Bz(t)−Mz(t)By (t)]− Mx (t)

T2

dMy (t)
dt = γ [Mz(t)Bx(t)−Mx(t)Bz(t)]− My (t)

T2

(F. Bloch, 1946)
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Rotations in 3D

Rotate vector r about axis ê (|ê| = 1) by angle θ
(O. Rodrigues, 1840)

r′ = c r + (1− c)(ê · r) ê + s ê× r = Rê(θ) r

where s ≡ sin θ, c ≡ cos θ,

with matrix

Rê(θ) =

 e2
1 (1− c) + c e1e2(1− c)− e3s e1e3(1− c) + e2s

e1e2(1− c) + e3s e2
2 (1− c) + c e2e3(1− c)− e1s

e1e3(1− c)− e2s e2e3(1− c) + e1s e2
3 (1− c) + c



Example: Rotation about z-axis ê =

0
0
1

: Rz(θ) =

cos θ −sin θ 0
sin θ cos θ 0

0 0 1


Passive rotation =new vector coordinates after rotation of coordinate system

as R(−θ)r, i.e. changing sign of factors “sin θ”.
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Symmetry Transformations

Symmetry operator U: |Ψ′〉 = U |Ψ〉, Q ′ = UQU† conserves:

− transition probabilities pΨ→Φ = |〈Φ| Ψ〉|2

y UU† = I→ U−1 = U† (unitarity)

− mean & eigenvalues 〈Q〉 = 〈Ψ|Q |Ψ〉,
Q =

∑
n

εn |ϕn〉 〈ϕn|

y [U,Q] = 0

Theorem

Q = Q† : unitary U(τ) = e iτQ =
∑
n

e iεnτ |ϕn〉 〈ϕn| , τ ∈ R

with U(−τ) = U−1(τ), U(ς)U(τ) = U(ς + τ) (M.H. Stone, 1930)
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Rotations in C2

Stones’ theorem with τ = θ
2 ,Q = σ3:

U3( θ2 ) = e i θ
2
σ3 = e i θ

2 |α〉 〈α|+ e−i θ
2 |β〉 〈β| =

(
e i θ

2 0

0 e−i θ
2

)

Given r in (X ,Y ,Z ) - rotate axes X & Y about Z by θ
(passive rotation of r) → coordinates of r in (X ′,Y ′,Z ) :

r′ = Rz(−θ)r =

 r1 cos θ + r2 sin θ
−r1 sin θ + r2 cos θ

r3


equivalent to

U3( θ2 )

(
r3 r1 − ir2

r1 + ir2 −r3

)
U−1

3 ( θ2 ) =(
r3 (r1 − ir2)e iθ

(r1 + ir2)e−iθ −r3

)

Rotating frame

Note: Rz(−θ) ∈ R3 ←→ U3( θ2 ) ∈ C2
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Rotations in C2 (2)

R1(φ) = e−iφ
2
σ1

= 1
2

[
e−iφ

2 (|α〉+ |β〉) (〈α|+ 〈β|) + e iφ
2 (|α〉 − |β〉) (〈α| − 〈β|)

]
=

(
cos φ2 −i sin φ

2

−i sin φ
2 cos φ2

)
y R−1

1 (φ) =

(
cos φ2 i sin φ

2

i sin φ
2 cos φ2

)
R2(χ) = e−iχ

2
σ2

= 1
2

[
e−iχ

2 (|α〉+ i |β〉) (〈α| − i 〈β|) + e iχ
2 (i |α〉+ |β〉) (−i 〈α|+ 〈β|)

]
=

(
cos χ2 − sin χ

2
sin χ

2 cos χ2

)
y R−1

2 (χ) =

(
cos χ2 sin χ

2
− sin χ

2 cos χ2

)
R3(θ) = e−i θ

2
σ3 = e−i θ

2 |α〉 〈α|+ e i θ
2 |β〉 〈β|

= e−i θ
2

(
1
0

)
(1 0) + e i θ

2

(
0
1

)
(0 1) =

(
e−i θ

2 0

0 e i θ
2

)

=

(
cos θ2 − i sin θ

2 0

0 cos θ2 + i sin θ
2

)
y R−1

3 (θ) =

(
e i θ

2 0

0 e−i θ
2

)
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Bloch vector

1) ρ =
∑

j

pj |Ψj〉 〈Ψj |

〈σi 〉 = Tr(ρσi ) =
∑

j

pj 〈Ψj |σi |Ψj〉 =
∑

j

pjσij ≡ bi

2) ρ = 1
2 (I + b1σ1 + b2σ2 + b3σ3) : 〈σi 〉 = Tr(ρσi ) ≡ bi

→ Bloch vector b ≡ 〈σ〉 = 2
~γ 〈µ〉 = average magnetization

Bloch sphere (Qubit)

b =

sin θ cosϕ
sin θ sinϕ

cos θ


b · σ =

(
cos θ e−iϕ sin θ

e iϕ sin θ − cos θ

)
eigenvector = any spin-1/2 state:

|Ψ〉 = cos θ2 |α〉+ e iϕ sin θ
2 |β〉
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Larmor precession

H0= −B0µ3 = −~γ
2 B0σ3 (Zeeman Hamiltonian)

= |γ > 0 : ω0 ≡ γB0| = −~
2

(
ω0 0
0 −ω0

)
y 2 eigenstates |α〉 : E1 = −~ω0

2

|β〉 : E2 = ~ω0
2

Spin-1/2 evolution |Ψ(t)〉 = e−
i
~ H0t |Ψ(0)〉

Stone’s theorem: e−
i
~ H0t =

(
e i
ω0
2

t 0

0 e−i
ω0
2

t

)
≡ U(t)

Consider |Ψ(t)〉 = U(t) |Ψ(0)〉 with “any” |Ψ(0)〉 = cos θ2 |α〉+ e iϕ sin θ
2 |β〉:

b(t) =

〈Ψ(t)|σ1 |Ψ(t)〉
〈Ψ(t)|σ2 |Ψ(t)〉
〈Ψ(t)|σ3 |Ψ(t)〉

 =

 cosω0t sinω0t 0
−sinω0t cosω0t 0

0 0 1

b(0) = Rz(−ω0t) b(0)

Conclusion

The Bloch vector of nuclear 1/2-spins precesses clockwise with Larmor frequency
ω0 about the direction of a static homogenous magnetic field (if b1(0) 6= 0 or
b2(0) 6= 0).
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Nuclear Magnetic Resonance

Apply static & perpendicular to it magnetic field rotating clockwise

H = −~γ
2

 B1 cosωt
−B1 sinωt

B0

 ·σ =

∣∣∣∣ω0 ≡γB0

ω1 ≡γB1

∣∣∣∣ = −~
2

(
ω0 ω1e iωt

ω1e−iωt −ω0

)

Transformation into clockwise rotating frame by U =

(
e−iωt

2 0

0 e iωt
2

)
:

|Υ〉 ≡ U |Ψ〉 y |Ψ〉 = U−1 |Υ〉

i~d |Ψ〉
dt = H |Ψ〉 → i~U−1 d |Υ〉

dt =
(
HU−1 − i~dU−1

dt

)
|Υ〉 ‖ U·

i~d |Υ〉
dt =

(
UHU−1 − i~UdU−1

dt

)
|Υ〉

With UHU−1 = −~
2

(
ω0 ω1

ω1 −ω0

)
and UdU−1

dt = i
2

(
ω 0
0 −ω

)
:

i~d |Υ〉
dt = H̃ |Υ〉 with H̃ = −~

2

(
Ω ω1

ω1 −Ω

)
= −~

2 (Ωσ3 + ω1σ1)

and Ω ≡ ω0 − ω

Conclusion

In the coordinate frame rotating with the applied perpendicular
magnetic field the Hamiltonian of the spin-1/2 system becomes
time-independent: H̃ ' −~Ω

2 σ3 (B1 � B0)
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Nuclear Magnetic Resonance (2)

Time-dependent perturbation V(t): i~d |Ψ(t)〉
dt = (H0 + V(t)) |Ψ(t)〉

Set |ψ(t)〉 =
∑
n

cn(t) |ϕn(t)〉 =
∑
n

cn(t)e−
i
~ εnt |ϕn〉 ‖ H0 |ϕn〉 = εn |ϕn〉

Spin-1/2 two-state system |ψ(t)〉 = c1(t)e i
ω0
2

t |α〉+ c2(t)e−i
ω0
2

t |β〉
with V12 = −~ω1

2 e iωt , V21 = V ∗12, V11 = V22 = 0, ω1�ω0,
and Ω ≡ ω0 − ω:{

dc1(t)
dt = iω1

2 e−iΩtc2(t)
dc2(t)

dt = iω1
2 e iΩtc1(t)

=⇒
{

d2c1(t)
dt2 + iΩdc1(t)

dt +
ω2

1
4 c1(t) = 0

d2c2(t)
dt2 − iΩdc2(t)

dt +
ω2

1
4 c2(t) = 0

Initial conditions (c1 = 1, c2 = 0 at t = 0), i.e. start in state |α〉:{
c1(t) = e−i Ω

2
t
[
cos (Λt) + iΩ

2Λ sin (Λt)
]

c2(t) = iω1
2Λ e i Ω

2
t sin (Λt)

with Λ ≡ 1
2

√
Ω2 + ω2

1

Conclusion

P|β〉(t) = |c2(t)|2 =
ω2

1

Ω2+ω2
1
sin2

(
t
2

√
Ω2 + ω2

1

)
(I.I. Rabi, 1937)

P|α〉(t) = 1− P|β〉(t)
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Radio-frequency pulses

Rotate z-magnetization (∼ σ3) by R(φ) = e−iφ
2
σ1 in C2

(φ = ωt = 2πνt):(
cos φ2 −i sin φ

2

−i sin φ
2 cos φ2

)(
1 0
0 −1

)(
cos φ2 i sin φ

2

i sin φ
2 cos φ2

)
=
(

cos2 φ
2 − sin2 φ

2

)
σ3 − 2 sin φ

2 cos φ2 σ2 = cosφ σ3 − sinφ σ2

From µ = ~γ
2 σ ≡ ~γI 7−→ Ix = 1

2σ1, Iy = 1
2σ2, Iz = 1

2σ3:

Ix
φI±x−→ Ix Ix

θI±y−→ Ix cos θ ∓ Iz sin θ

Iy
φI±x−→ Iy cosφ± Iz sinφ Iy

θI±y−→ Iy

Iz
φI±x−→ Iz cosφ∓ Iy sinφ Iz

θI±y−→ Iz cos θ ± Ix sin θ
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Coupled spin systems

System of N 1/2 spins

H = ~

(
N∑
k

ω0k
Izk

+ 2π
N∑

k<l

Jkl Ik Il

)
with ω0k

= − (1− σk) γB0, σk - isotropic chemical shielding
Jkl - indirect spin-spin coupling tensor
Ik Il = Izk

Izl
+ (Ixk

Ixl
+ Iyk

Iyl
)

For 2π |Jkl | � |ω0k
− ω0l

| and without ~

H =
N∑
k

ω0k
Izk

+ 2π
N∑

k<l

Jkl Izk
Izl

During acquisition single spin magnetization is propagated in the

rotating frame by U = e−
i
h
H̃t , but evolution of coupled spin

systems follows direct product algebra.
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