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Measurement and Dynamics

Measurement of observable Q in quantum state W) = " ¢, |pn)
yields one of its eigenvalues ¢, with probability |c,,\2.
After the measurement the system remains in eigenstate |p,).

Postulate

In a closed quantum system the time evolution (dynamics) of
states is generated by the Hamiltonian H

n YD) — Hw(t)) (E. Schrédinger, 1926)

with solution |W(t)) = e~ #Ht|W(0)) (H = H)

H time-independent: H[¢n) = En[tn)
[hn(t)) = e~ 7Bt |1h,) “stationary states
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Evolution of the Density Operator

p:prl\V- ) (Vi = \‘U>=ZCJ‘|%’>
_ZPIZCC”‘PJ (k| = ZC ck |@j) (k|

=3 (L5 v+ £
= PR W) (W] (i) (v )}
— L (Hp— pH)

ihcfi—f = [H, p] (Liouville - von Neumann equation)

with solution p(t) = e~ 1Hp(0) enHt

F. Eisenmenger Quantum Mechanics (I1)




Spin dynamics: General case

Consider observable Q (— Q) for states |W(t)) ((W] W) =1, Vt)'
( ) — d(‘U(t)IQI‘U(t» <\Il(t)| QH — HQ [W(1)) + (W( | lw(t))

ﬁ@ %<[Q,H]> (=

Proposition

Spin 1/2 magnetic moment p in field B: H=—-B - p = —%B o

With dgi =0: d<g;1>: % <[0’1, (Blo'l + Boos + B30’3)]>

= (B3 (02) — B2{03))
92) — 4(By (03) — B3 (01))

N9s) — 4(Ba (o1) — By (02))

Evolution of average magnetic moment in field B

A — () x B
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Bloch equations: Relaxation

Relaxation: establish thermodynamic equilibrium of spin system due to its
interaction & energy exchange with (1) “lattice” in thermal motion (heat
reservior), and (2) neighbouring spins (direct dipolar coupling)

Magnetic moment of N spins (bulk magnetization): M = Zun

(1) Spin-lattice (“longitudinal”) relaxation: return equilibrium excess of
spins in “ground state” (Mo = noNyiz, no ~ 107°) at rate Ti

VL) — oy [Mi(£)By (1) — My (£) By (t)] + MoHelt)

(2) Spin-spin (“transversal”) relaxation: x- and y-magnetizations vanish

at rate %:
de(t) = v [M,(t)B.(t) — M,(t)B,(t)] — MXTgt)
dNQﬁ(t) ¥ [Ma () Be(t) — Mi(£)B2(1)] — 22

(F. Bloch, 1946)
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2]

Rotate vector r about axis & (|&| = 1) by angle 0
(0. Rodrigues, 1840)

=crt+(l—c)(@r)é+séxr=Rs(f)r

where s =sinf, ¢ = cos @,

with matrix

e?(l—c)+c ee(l—c)—es ees(l—c)+es
Re(f) = |e1ea(l1—c)+e3s  e3(1—c)+c  exes(l—c)—ers
ee3(l—c)—es ee(l—c)+es e32(1—c)+c

0 cosf —sind 0
Example: Rotation about z-axisé= [0]: R,(§)=|sind cosf 0
1 0 0 1

Passive rotation =new vector coordinates after rotation of coordinate system
as R(—0)r, i.e. changing sign of factors “sin§".
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Symmetry Transformations

Symmetry operator U: |W/) = U |¥), @ = UQUT conserves:

— transition probabilities  py_e = |(®| V)|?
~ UUT=1—-U"1t=U" (unitarity)
— mean & eigenvalues (Q) = (V| Q |V),

Q= Z5n lon) (@nl

~ [U,Q]=0

Q = Qf: unitary U(1) = ™9 = Z e |on) {nl, T ER

with U(—1) = U_l(r), U()U(7) = U(g +7) (M.H. Stone, 1930)
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Rotations in C?2

Stones’ theorem with 7 = %, Q=o03:

Us(§) = €293 = % ) (a| + 712 |B) (8] = (e i :.9>

0

Nl

Given rin (X, Y, Z) - rotate axes X & Y about Z by 0
(passive rotation of r) — coordinates of r in (X', Y’, Z) :

ricos@ + rysinf
—rsinf + rpcosf
r3
equivalent to

0 r3 =i\ 10y _
U3(2)(r1+ir2 e >U3 (2) =
r (r —ir)e

(n+ irz)e_i‘g -r3

Note: R,(—0) € R® «— U3(g) eC?

Rotating frame
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Rotations in C? (2)

L% (Ja) +18)) ({al + (1) + €% () — 18)) ({a] - (8))]
cos? —ising cos? ising
—< .3 g) ~ R{Y¢) = ( 3 3,)

isin 2 COSE

%[e 2 (o) +118)) (] =i (B]) + €2 (i|a) + |8)) (— '<a|+<g|)]
cos¥ —sin3 - cos¥ sin%

:<5i”§< C05§> ~ R21(X):( sm% cos%)

Ry(0) = e 127 = % Ja) (| + €3 (5) {5

~i (oo Gan- (7 o)

[ s 0 i
_ [cosz —ising 0 19y _ [ ©
< 0 cosg + isin g) ~ Ry(0) <0

N\Q

NI

F. Eisenmenger Quantum Mechanics (I1)



Bloch vector
1) p= ij W) (W]
(o) = Trpa, ij (Viloi |V)) ijo;jzb;

2) p= %(I+b10'1+b20'2+b30'3) (o > Tr(po;) = b;

= (uy = average magnetization

— Bloch vector b = (o)

Bloch sphere (Qubit)

sin 0 cos
b= | sinfsiny
cosf

b.-o— cosf e ¥sinf
~ \e¥sinf —cosf
eigenvector = any spin-1/2 state:

|W) = cos 5 |a> + e'“sin ¢ |ﬂ)
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Larmor precession

Ho= —Bousz = —%Boag (Zeeman Hamiltonian)
wo O
=|y>0: wp=9Bg| = -2 £am 2
Iy 0 = 7Bl 3 <0 _wo)
aE =
2 eigenstates |a) : Ey = — &0
hwo
Ey= g

1B) : EZZT

Spin-1/2 evolution [W(t)) = e~ #Hot |W(0))
: 20t
Stone's theorem: e~ #Hot — (e : .0'w'0t> = U(t)
0 e
Consider [W(t)) = U(t) |W(0)) with “any” [W(0)) = cos § |a) + €¥sin § |B):

((\Il(t)|0'1‘~ll(t))) ( coswpt sinwpt 0)
b(t) = [ (W(t)|o2|W(t)) | = | —sinwot coswpt O | b(0) = R,(—wpt) b(0)

V(1) o3 |W(t)) 0 0 1

The Bloch vector of nuclear 1/2-spins precesses clockwise with Larmor frequency
wo about the direction of a static homogenous magnetic field (if by(0) # 0 or

by(0) # 0).
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Nuclear Magnetic Resonance

Apply static & perpendicular to it magnetic field rotating clockwise
By coswt wt
m ) - _ nfwo wie"
H=-7 (— Bisinwt | o= =-3 (wle*i““ o

Bo
Lo . . e 0
Transformation into clockwise rotating frame by U = Lot |

wo E’yBO
w1 E’}/Bl

0 ez
IT)=U[¥) ~ [W)=U"T)
indfp —Hw) — it = (HUT iR )| U
indf = (UHUT — iU Y ) )

ih% =A|T) with H=-1 (Q w1> = -1 (Qo3 +wio1)

In the coordinate frame rotating with the applied perpendicular
magnetic field the I-!amiltonian of the spin-1/2 system becomes
time-independent: H ~ —%03 (B1 < Bop)
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Nuclear Magnetic Resonance (2)

Time-dependent perturbation V(¢): |hd|w = (Ho + V(1)) |W(t))

Set [9(8) = 2 en(®) len(8) = D en()e™ 7 in) || Holiom) =< )
Spin-1/2 two-state system |¢)(t)) = ci(t)e' 2t |a) + cp(t)e 21| B)
with Vs = 7%6&“”, Vo1 = V1*27 Vi = Vo =0, wi<kwy,

and Q=wo —w

. . LIJQ
{dc;h(Lt) = o1 g-i0tg (1) . {"2;12(”+i§2dc;£f)+jc1(t)=0

dcﬁ,it) — |w1 ey (t) d2§§2(t) _ iQdcf,ﬁt) T %%CQ(t) -0

Initial conditions (¢ =1, 62 =0 at t =0), i.e. start in state |«):

alt)=e 7t [cos(/lt) sin (At)] B
{C2(t) Lt i 2tsin (At) 2t with A = 1\/m

Pigy(t) = lea(t)? =
Pioy(t) =1 = Pigy(t)
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Radio-frequency pulses

Rotate z-magnetization (~ '3) by R(¢) = e 27 in C2
(¢ = wt =27vt):

cos% —isin% 1 0 cos% isin%
—isin% cos% 0 -1 isin% cos%
= (coszg — sin? %) o3 — 2sin%cos% 09 =COSp 03 —sing o>

From p = %o’ =l — Iy= %01, l, = %0'2, I, = %0'3:

d)lix 6|iy
—

I, I, I, — l,cos8 F1,sinf
Plix . Ol
I, — l,cos¢p+£l,sing I, — 1,
ol . (] .
I, = l,cos¢Flysing I, — l,cosf =+ l,sinf
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Coupled spin systems

System of N 1/2 spins

H=nh <Zwok 2z +27TZJkI k|l>

k<l
with  wo, = — (1 — ox)vBo, o - isotropic chemical shielding
Ji/ - indirect spin-spin coupling tensor

Ikll — IZ;(|Z/ + (IXkIXI + IYkIYI)

For 2 |Jk/| < |wo, — wo,\ and without &

H = Zwok z T 27TZJk/|zk

k<l
During acqwsmon single spin magnetization is propagated in the
rotating frame by U = e~ #1* but evolution of coupled spin
systems follows direct product algebra.
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