

NMR course at the FMP:
NMR of organic compounds and
small biomolecules

- III-

23.03.2009

Peter Schmieder
AG Solution NMR

The program

The product operator formalism

(the "PROF")

Basic principles

Building blocks

Two-dimensional NMR: The COSY

The produkt operator formalism (The "PROF")

The „PROF“

The „PROF“ is a quantummechanical description of NMR-experiments based on the density matrix formalism

In the same way as quantum mechanics it can be introduced in an axiomatic way and does then consist of a set of rules

O.W. Sørensen et al.

Prog. NMR. Spectrosc. 16, 163-192 (1983)

The „PROF“

When using those rules the mathematics mainly consists of simple trigonometry and addition/subtraction. It is far more important to keep track of the calculations in order not make trivial mistakes.

trigonometric formula

(1)

$$\cos^2\alpha + \sin^2\alpha = 1$$

$$\sin^2\alpha = 2 \sin\alpha \cos\alpha$$

$$\cos^2\alpha = \cos 2\alpha - \sin 2\alpha$$

$$\exp \pm i\alpha = \cos \alpha \pm i \sin \alpha$$

The „PROF“

$$\sin(\alpha+\beta) = \sin\alpha \cos\beta + \cos\alpha \sin\beta$$

$$\sin(\alpha-\beta) = \sin\alpha \cos\beta - \cos\alpha \sin\beta$$

$$\cos(\alpha+\beta) = \cos\alpha \cos\beta - \sin\alpha \sin\beta$$

$$\cos(\alpha-\beta) = \cos\alpha \cos\beta + \sin\alpha \sin\beta$$

trigonometric
formula (2)

$$\sin\alpha \cos\beta = \frac{1}{2} [\sin(\alpha+\beta) + \sin(\alpha-\beta)]$$

$$\cos\alpha \sin\beta = \frac{1}{2} [\sin(\alpha+\beta) - \sin(\alpha-\beta)]$$

$$\cos\alpha \cos\beta = \frac{1}{2} [\cos(\alpha+\beta) + \cos(\alpha-\beta)]$$

$$\sin\alpha \sin\beta = \frac{1}{2} [\cos(\alpha-\beta) - \cos(\alpha+\beta)]$$

The „PROF“

In most calculations product operators are expressed
in cartesian coordinates

At the beginning of an experiment we have H_z

H_z

Type of nucleus
(here hydrogen,
in more general
equations
I or S)

direction
(here cartesian
coordinates)

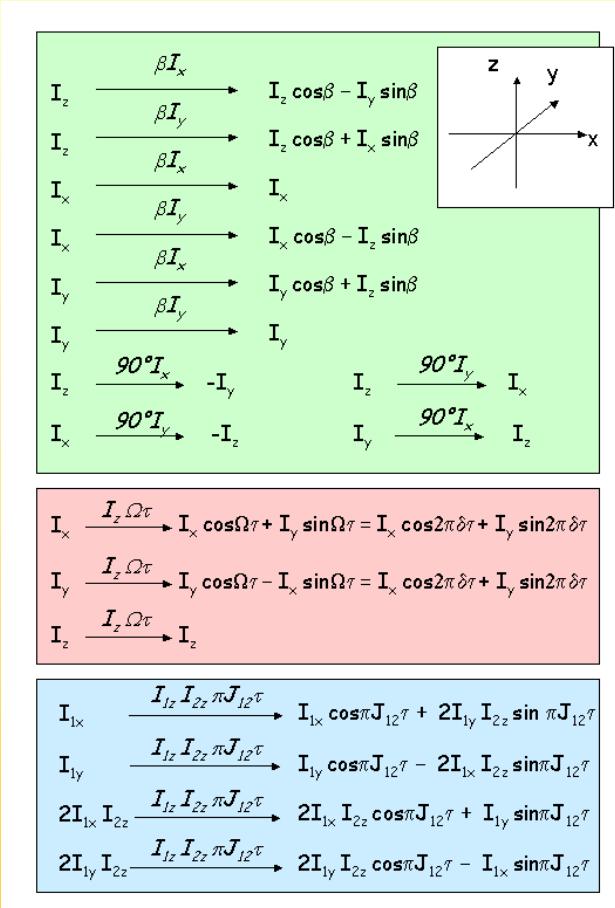
The „PROF“

x, y -magnetization is then expressed as H_x or H_y
or as C_x and C_y

During a calculation operators of chemical shift or coupling act on the operators that represent magnetization. According to certain rules other operators are thus created.

$$A \xrightarrow{\beta B} C \cos\beta + D \sin\beta$$

The „PROF“



$$\begin{aligned} \cos 2\alpha + \sin 2\alpha &= 1 \\ \sin 2\alpha &= 2 \sin \alpha \cos \alpha \\ \cos 2\alpha &= \cos 2\alpha - \sin 2\alpha \\ \exp^{\pm i\alpha} &= \cos \alpha \pm i \sin \alpha \end{aligned}$$

$$\begin{aligned} \sin(\alpha + \beta) &= \sin \alpha \cos \beta + \cos \alpha \sin \beta \\ \sin(\alpha - \beta) &= \sin \alpha \cos \beta - \cos \alpha \sin \beta \\ \cos(\alpha + \beta) &= \cos \alpha \cos \beta - \sin \alpha \sin \beta \\ \cos(\alpha - \beta) &= \cos \alpha \cos \beta + \sin \alpha \sin \beta \end{aligned}$$

$$\begin{aligned} \sin \alpha \cos \beta &= \frac{1}{2} [\sin(\alpha + \beta) + \sin(\alpha - \beta)] \\ \cos \alpha \sin \beta &= \frac{1}{2} [\sin(\alpha + \beta) - \sin(\alpha - \beta)] \\ \cos \alpha \cos \beta &= \frac{1}{2} [\cos(\alpha + \beta) + \cos(\alpha - \beta)] \\ \sin \alpha \sin \beta &= \frac{1}{2} [\cos(\alpha - \beta) - \cos(\alpha + \beta)] \end{aligned}$$

http://www.fmp-berlin.de/schmieder/teaching/vorlesung_nmr/pdf/rechenhilfen_produktoperatoren.pdf

The „PROF“

The name of the operators is derived from the type of magnetization they represent

H_z = longitudinal magnetization

H_x, H_y = in-phase magnetization

$H_{1x}H_{2z}$ = anti-phase magnetization

$H_{1x}H_{2y}$ = multiple quantum magnetization

}

transverse magnetization

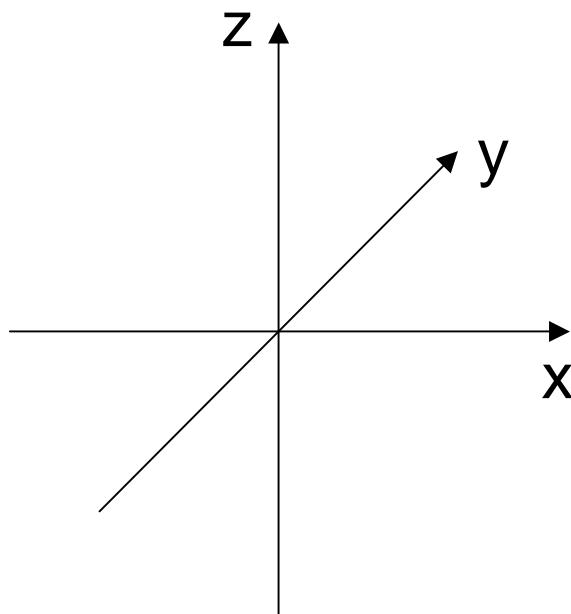
Beside those operators based on cartesian coordinates there are others which are not of interest for now

The „PROF“

Chemical shift and J-coupling (as long as it is weak coupling) can be calculated independently and in an arbitrary order.

That makes the calculation of „building blocks“ possible: the effect of these building blocks is then known and does not have to be re-calculated in more complex experiments

The „PROF“



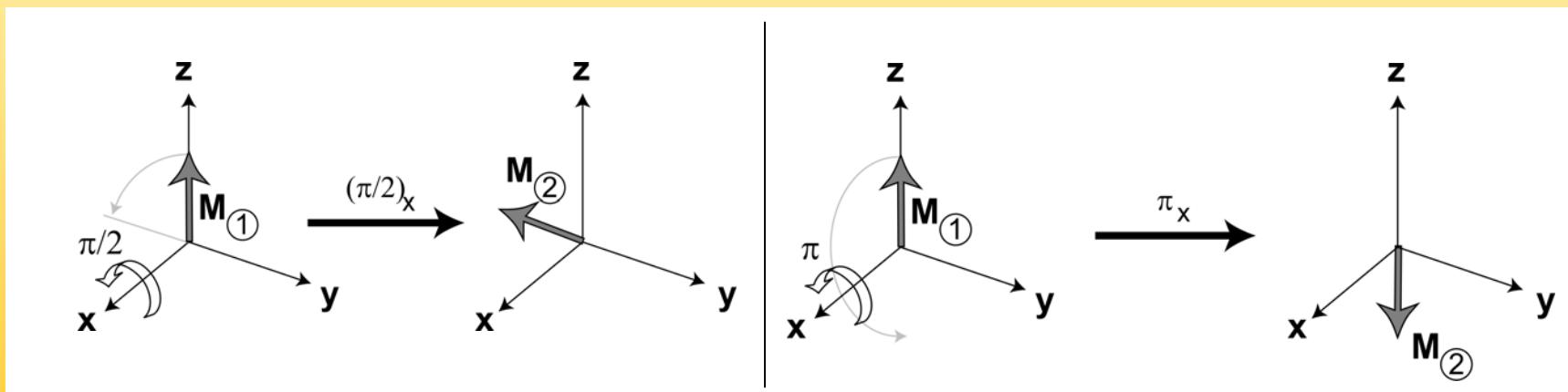
We use a „right-handed“ coordinate system

The „PROF“

RF(radio-frequency)-pulses: the „x-Puls“

Remember:

Using the vector model 90° and 180° pulses hitting
z-magnetization were described like this



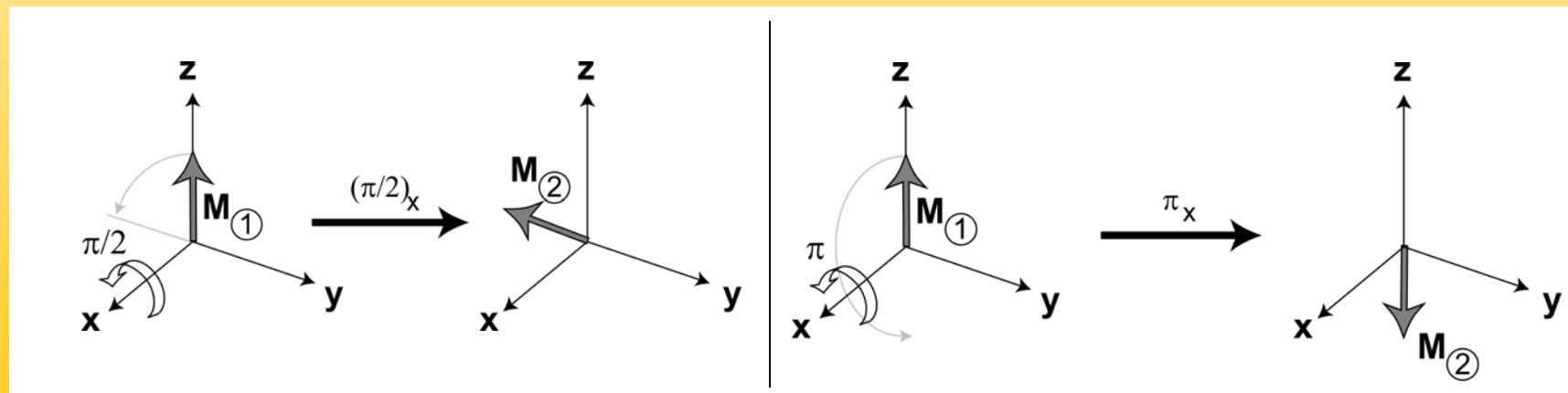
The „PROF“

The rule for the x-pulse looks like that

$$I_z \xrightarrow{\beta I_x} I_z \cos\beta - I_y \sin\beta$$

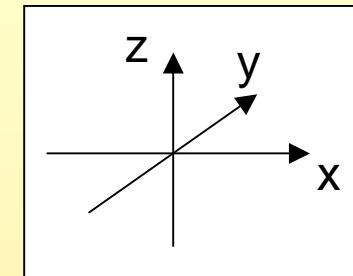
$\beta = 90^\circ: \cos \beta = 0, \sin \beta = 1$, the result is $-I_y$

$\beta = 180^\circ: \cos \beta = -1, \sin \beta = 0$, the result is $-I_z$



The „PROF“

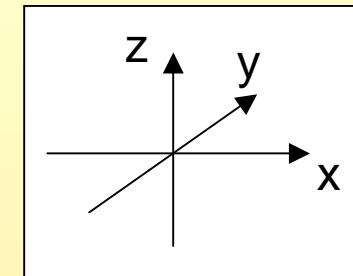
Rules for pulses from other directions
are then easily derived



$$\begin{array}{l}
 I_z \xrightarrow{\beta I_x} I_z \cos\beta - I_y \sin\beta \\
 I_z \xrightarrow{\beta I_y} I_z \cos\beta + I_x \sin\beta \\
 I_z \xrightarrow{\beta I_{-x}} I_z \cos\beta + I_y \sin\beta \\
 I_z \xrightarrow{\beta I_{-y}} I_z \cos\beta - I_x \sin\beta
 \end{array}$$

The „PROF“

Pulses do also act on transverse magnetization but not if both point in the same direction

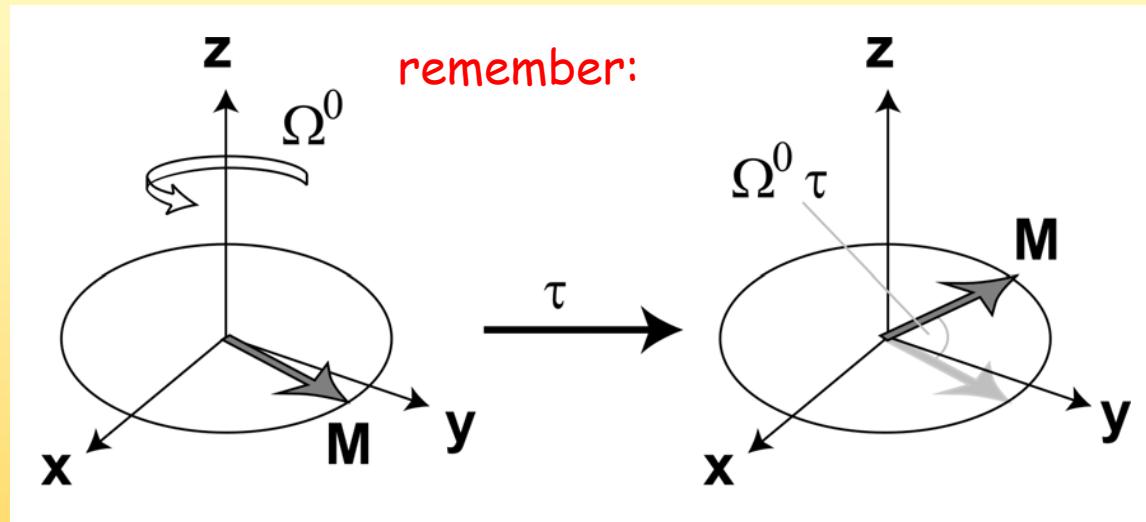


$$\begin{array}{l}
 I_x \xrightarrow{\beta I_y} I_x \cos\beta - I_z \sin\beta \\
 I_y \xrightarrow{\beta I_x} I_y \cos\beta + I_z \sin\beta \\
 I_x \xrightarrow{\beta I_x} I_x \\
 I_y \xrightarrow{\beta I_y} I_y
 \end{array}
 \quad \left. \begin{array}{l} I_x \\ I_y \end{array} \right\} \text{no effect !!}$$

The „PROF“

chemical shift:

chemical shift Ω^0
acts for a time τ



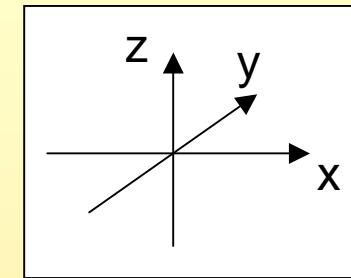
$$I_x \xrightarrow{I_z \Omega^0 \tau} I_x \cos \Omega^0 \tau + I_y \sin \Omega^0 \tau = I_x \cos 2\pi\delta\tau + I_y \sin 2\pi\delta\tau$$

angular frequency Ω^0

„normal“ frequency δ (in hertz)

The „PROF“

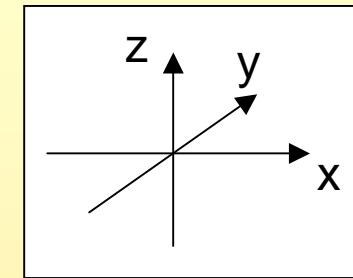
Chemical shift acts only on transverse magnetization, I_z remains untouched,
That is why it is sometimes called „z-pulses“



$$\begin{aligned}
 I_x &\xrightarrow{I_z \Omega \tau} I_x \cos \Omega \tau + I_y \sin \Omega \tau \\
 I_y &\xrightarrow{I_z \Omega \tau} I_y \cos \Omega \tau - I_x \sin \Omega \tau \\
 I_z &\xrightarrow{I_z \Omega \tau} I_z
 \end{aligned}$$

The „PROF“

Scalar coupling leads to operators in which several operators are multiplied with each other: product operators



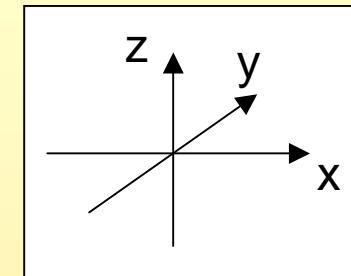
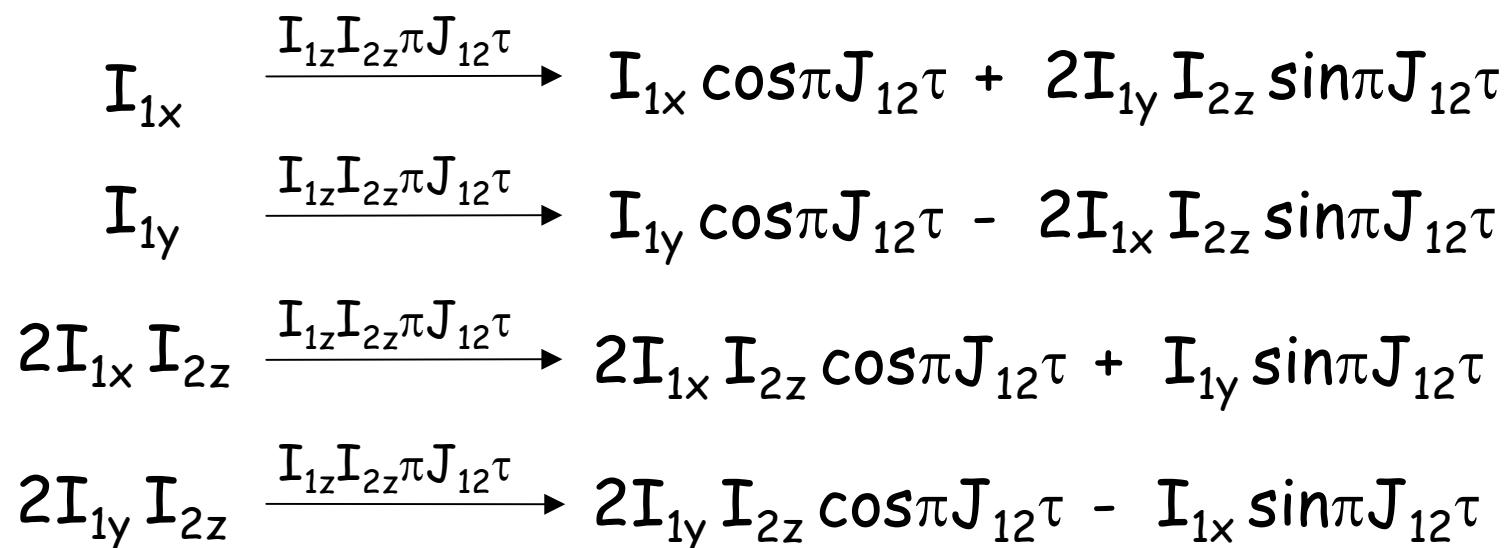
$$I_{1x} \xrightarrow{I_{1z}I_{2z}\pi J_{12}\tau} I_{1x} \cos \pi J_{12}\tau + 2I_{1y}I_{2z} \sin \pi J_{12}\tau$$

in-phase magnetization:
This part stays untouched

anti-phase magnetization:
coupling causes an modulation of transverse magnetization due to the coupling partner

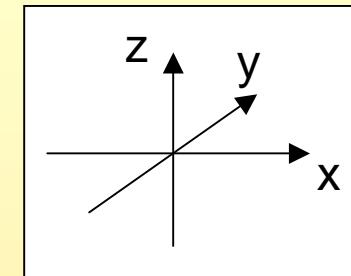
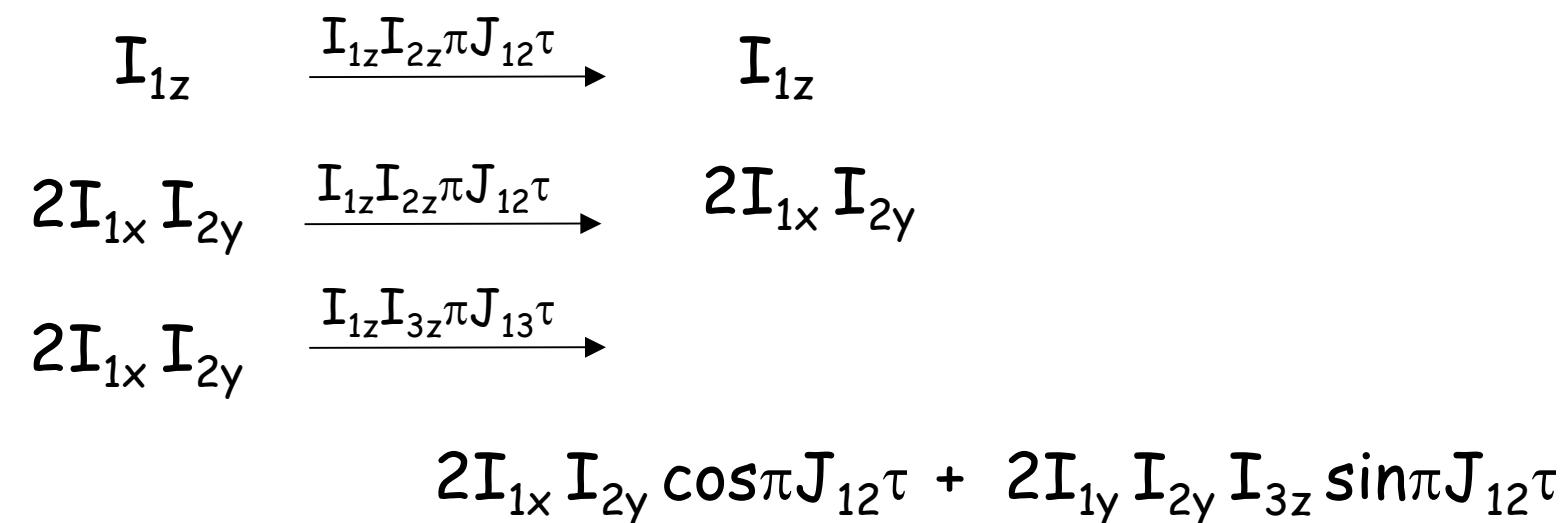
The „PROF“

Scalar coupling acts on various kinds of transverse magnetization....



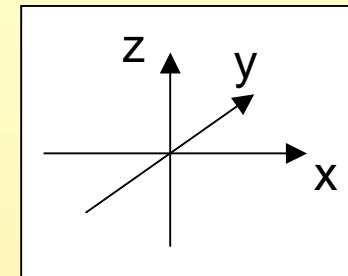
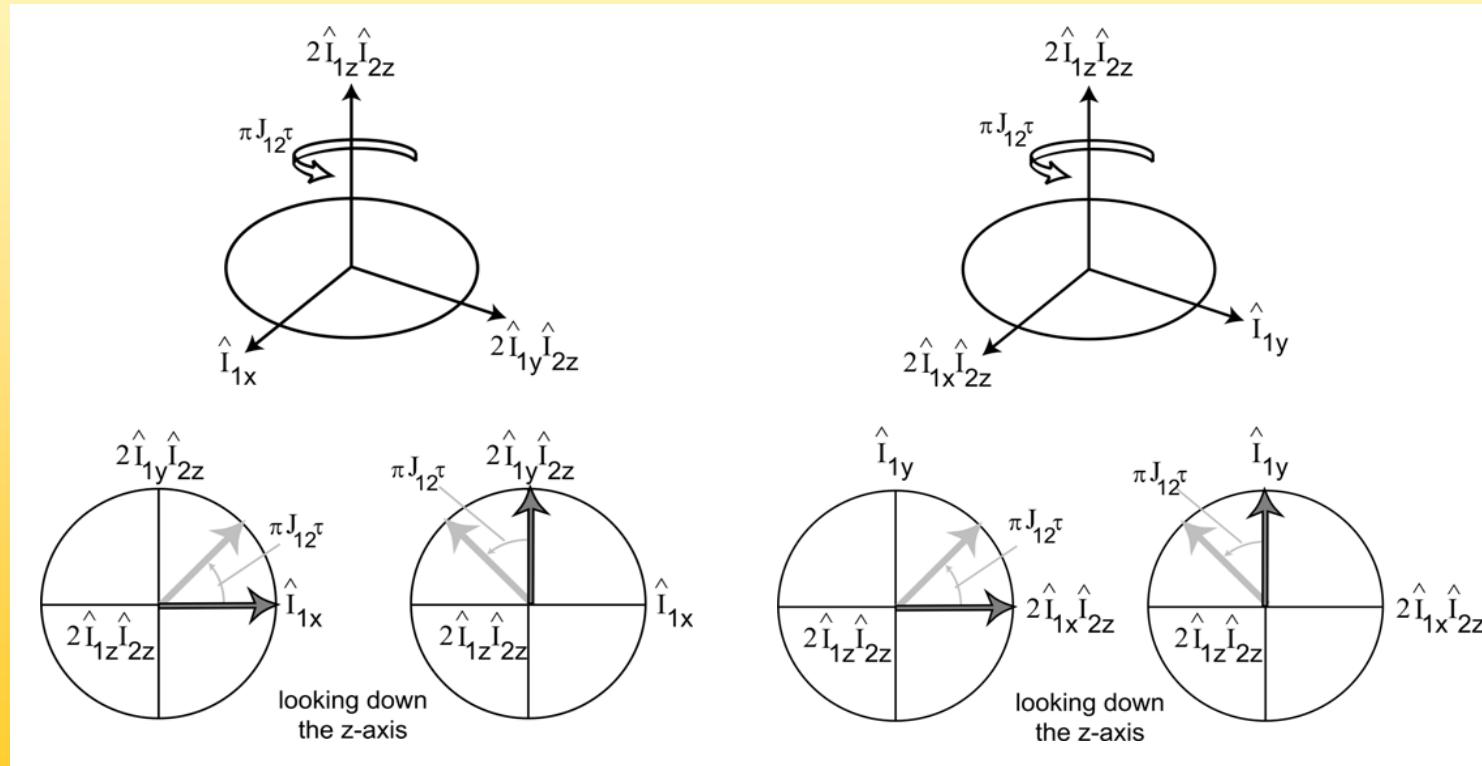
The „PROF“

... but not on longitudinal magnetization or on multiple quantum magnetization



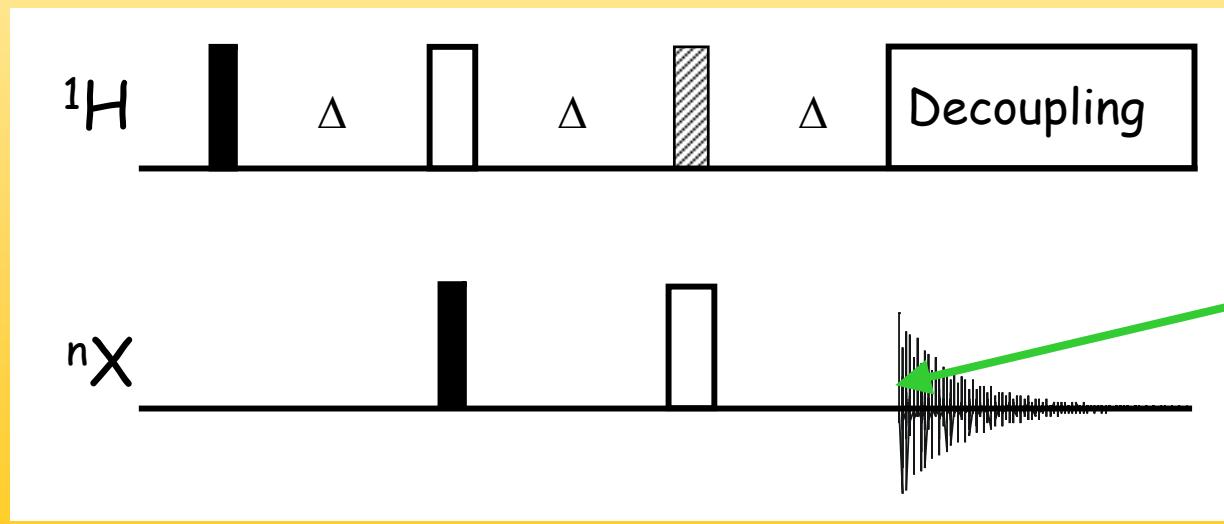
The „PROF“

The evolution due to scalar coupling can be visualized with cartesian coordinates



The „PROF“

Aim of the calculation is to derive what happens during a pulse sequence. Then we must ask what types of product operators lead to detectable signals during the acquisition



What is
present at
that point that
is detectable ?

The „PROF“

Not detectable are longitudinal magnetization (I_{1z}) or multiple quantum magnetization (z.B. $I_{1x}I_{2y}$) since the usual selection rules are still valid

Only transverse in-phase (I_{1x}) magnetization is detectable, anti-phase magnetization (e.g. $I_{1x}I_{2z}$) can evolve into something detectable during the acquisition time

The „PROF“

Let us now calculate what results from „in-phase“ magnetization during the acquistion time under the influence of chemical shift and scalar coupling ?

$$I_{1x} \xrightarrow{I_z \Omega_1 t_{aq}} I_{1x} \cos \Omega_1 t_{aq} + I_{1y} \sin \Omega_1 t_{aq}$$

$$\xrightarrow{I_{1z} I_{2z} \pi J_{12} t_{aq}} I_{1x} \cos \Omega_1 t_{aq} \cos \pi J_{12} t_{aq} + \cancel{2 I_{1y} I_{2z} \cos \Omega_1 t_{aq} \sin \pi J_{12} t_{aq}} \\ + I_{1y} \sin \Omega_1 t_{aq} \cos \pi J_{12} t_{aq} - \cancel{2 I_{1x} I_{2z} \sin \Omega_1 t_{aq} \sin \pi J_{12} t_{aq}} \\ = I_{1x} \cos \Omega_1 t_{aq} \cos \pi J_{12} t_{aq} + I_{1y} \sin \Omega_1 t_{aq} \cos \pi J_{12} t_{aq}$$

The „PROF“

We use $\Omega_1 = 2\pi\delta_1$ and we get (using our trigonometric formulas)

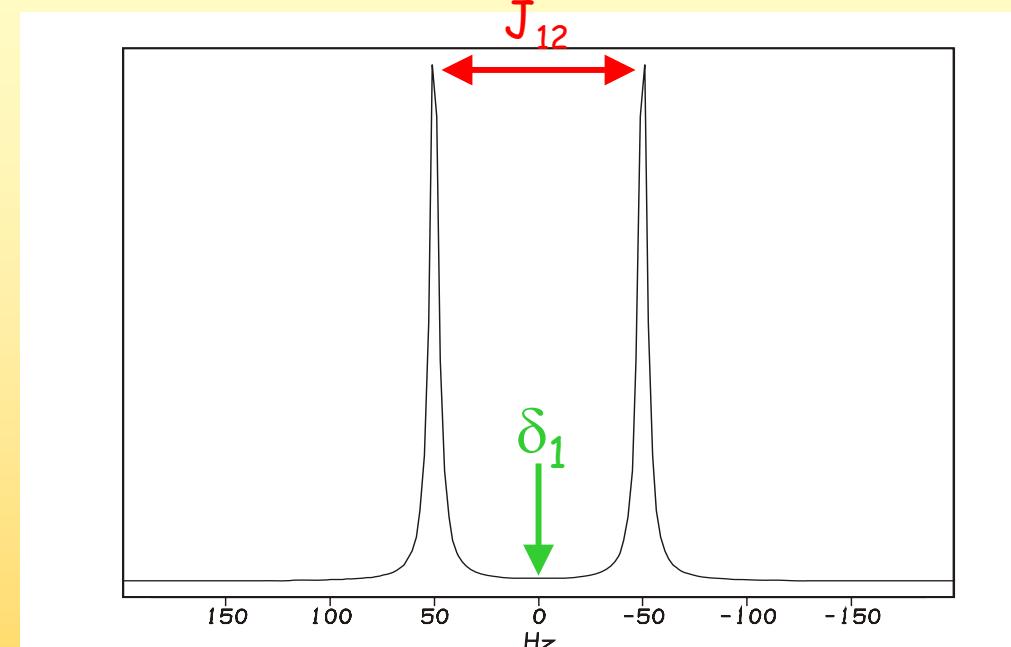
$$I_{1x} \frac{1}{2} [\cos 2\pi(\delta_1 + J_{12}/2)t_{aq} + \cos 2\pi(\delta_1 - J_{12}/2)t_{aq}] \\ + I_{1y} \frac{1}{2} [\sin 2\pi(\delta_1 + J_{12}/2)t_{aq} + \sin 2\pi(\delta_1 - J_{12}/2)t_{aq}] \text{ Imaginärteil!}$$

$$= I_1 \frac{1}{2} [\exp i 2\pi(\delta_1 + J_{12}/2)t_{aq} + \exp i 2\pi(\delta_1 - J_{12}/2)t_{aq}]$$

„in-phase“ magnetization results in two lines with the same sign, separated by J Hz and centered around δ_1 Hz

The „PROF“

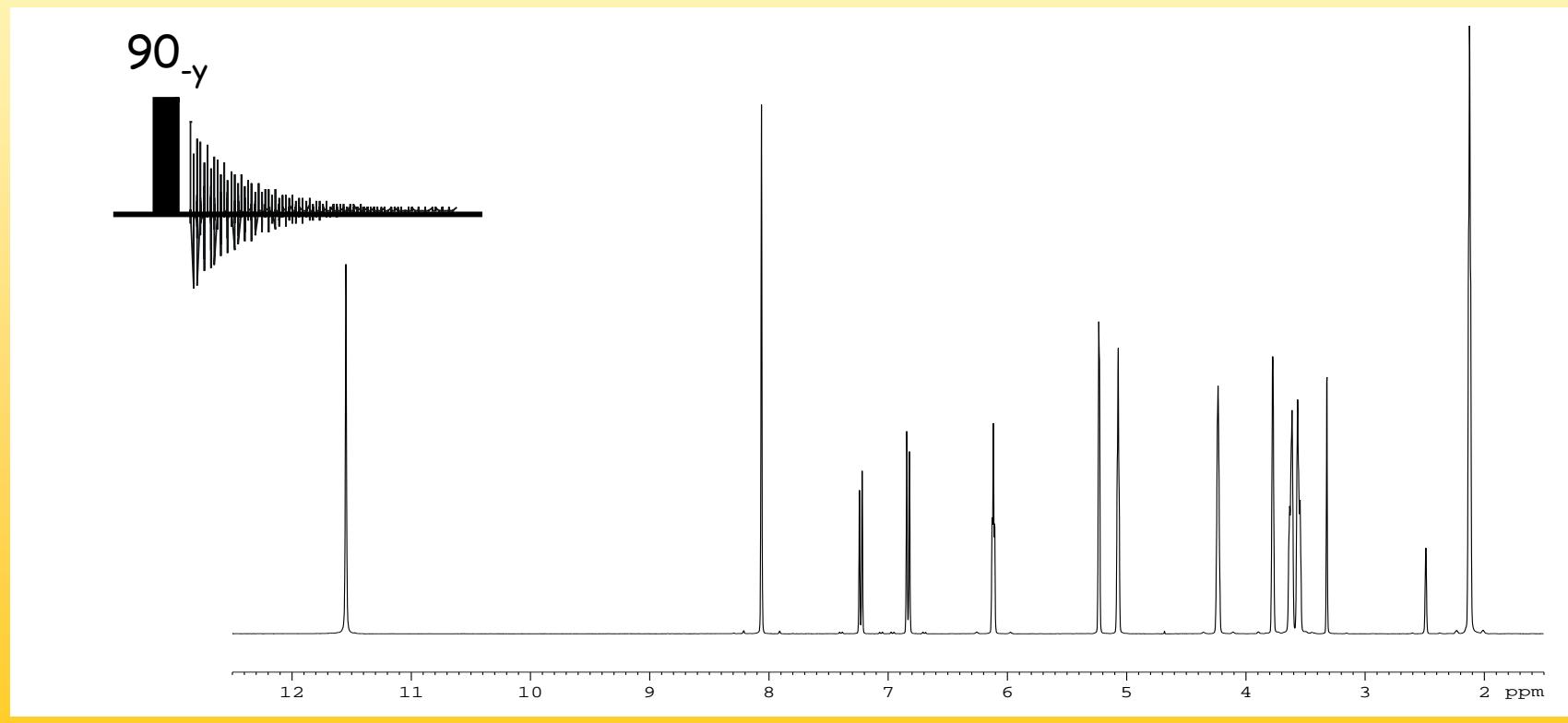
$I_{1x} \equiv$



Hence the name „in-phase“
magnetization, since the result
is an in-phase doublet

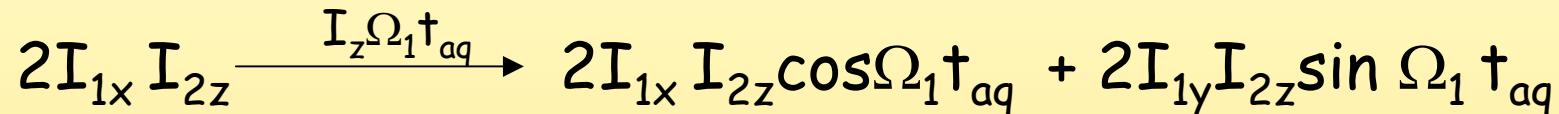
The „PROF“

This is what we get in a conventional 1D-NMR-experiment



The „PROF“

How about „anti-phase“ magnetization ?



$$\begin{aligned}
 & \xrightarrow{I_{1z} I_{2z} \pi J_{12} t_{aq}} \\
 & \cancel{2I_{1x} I_{2z} \cos \Omega_1 t_{aq} \cos \pi J_{12} t_{aq} + I_{1y} \cos \Omega_1 t_{aq} \sin \pi J_{12} t_{aq}} \\
 & \quad + \cancel{2I_{1y} I_{2z} \sin \Omega_1 t_{aq} \cos \pi J_{12} t_{aq} - I_{1x} \sin \Omega_1 t_{aq} \sin \pi J_{12} t_{aq}} \\
 & = - I_{1x} \sin \Omega_1 t_{aq} \sin \pi J_{12} t_{aq} + I_{1y} \cos \Omega_1 t_{aq} \sin \pi J_{12} t_{aq}
 \end{aligned}$$

The „PROF“

Again we use $\Omega_1 = 2\pi\delta_1$ and get

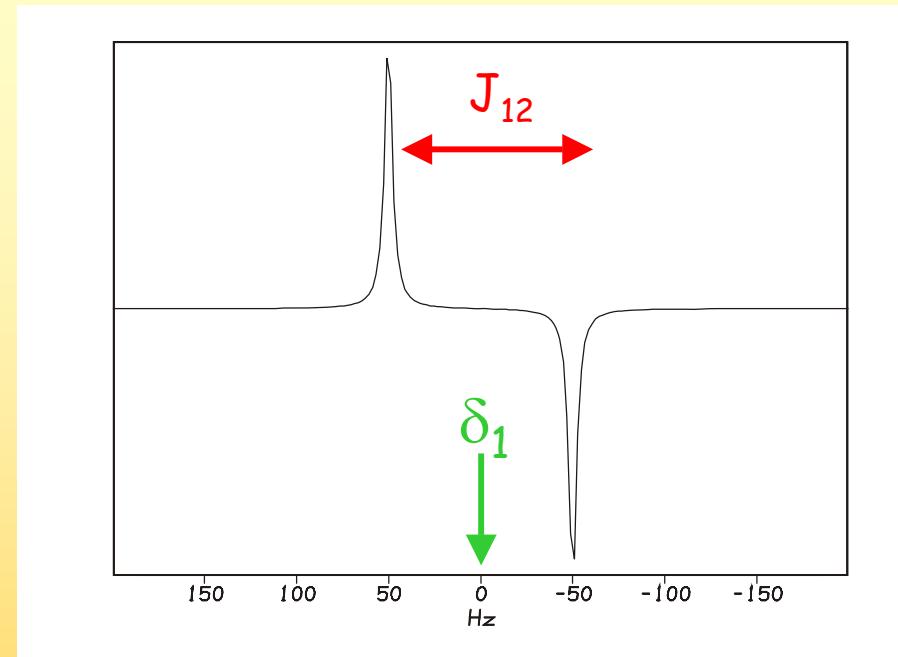
$$I_{1x} \frac{1}{2} [\cos 2\pi(\delta_1 + J_{12}/2)t_{aq} - \cos 2\pi(\delta_1 - J_{12}/2)t_{aq}] \\ + I_{1y} \frac{1}{2} [\sin 2\pi(\delta_1 + J_{12}/2)t_{aq} - \sin 2\pi(\delta_1 - J_{12}/2)t_{aq}] \text{ Imaginärteil!}$$

$$= I_1 \frac{1}{2} [\exp i 2\pi(\delta_1 + J_{12}/2)t_{aq} - \exp i 2\pi(\delta_1 - J_{12}/2)t_{aq}]$$

„anti-phase“ magnetization thus results in two lines with opposite sign, separated by J Hz and centered around δ_1 Hz

The „PROF“

$$2I_{1x}I_{2z} \equiv$$



Hence the name „anti-phase“ magnetization, since we obtain an anti-phase doublet

To create that type of magnetization we need a bit more then just one pulse !!

The „PROF“

a first summary

Produkt operators are used for a convinient calculation of complex pulse sequences

Usually the calculation is performed up to the end of the pulse sequence right before the acquistion.

The detectable operators that are present at that point give rise to well know signals during detection.

The calculation thus describes the result of the pulse sequence

The „PROF“

Since the calculation can get confusing quite quickly
follow those rules

rule 1: calculate carfully, avoid sign or writing
mistakes

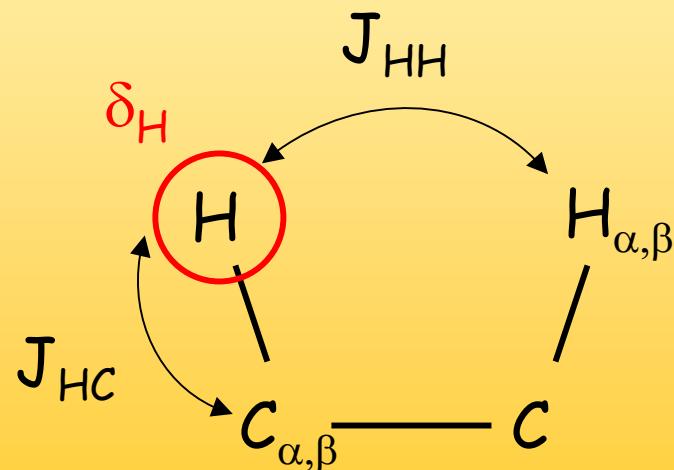
rule 2: always try to calculate seperable
interactions seperately, i.e. chemical shift seperately
from scalar coupling

rule 3: do not re-caclulate "building blocks"

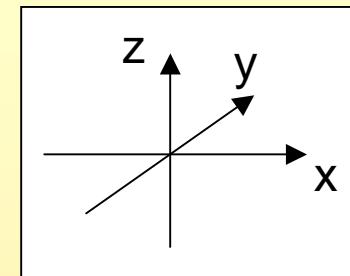
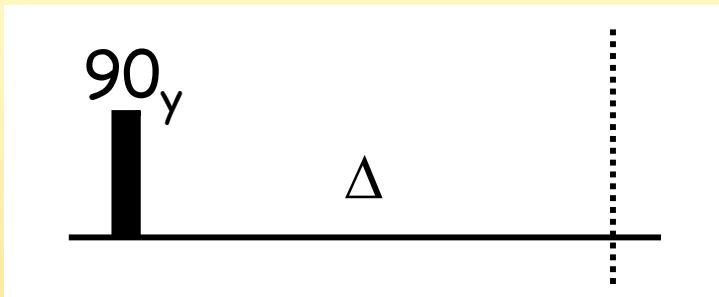
Building blocks

Building blocks

Now we know what kind of signals result from the detectable types of magnetization, now we can start to calculate "building blocks"



Building blocks



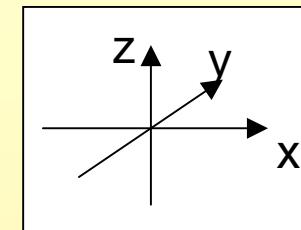
chemical shift: δ_H

$$H_x \xrightarrow{\delta_H \Delta} H_x \cos \Omega_H \Delta + H_y \sin \Omega_H \Delta$$

$$\xrightarrow{\delta_H t_{aq}} H_x \cos \Omega_H \Delta \cos \Omega_H t_{aq} + H_y \cos \Omega_H \Delta \sin \Omega_H t_{aq}$$

$$H_y \sin \Omega_H \Delta \cos \Omega_H t_{aq} - H_x \sin \Omega_H \Delta \sin \Omega_H t_{aq}$$

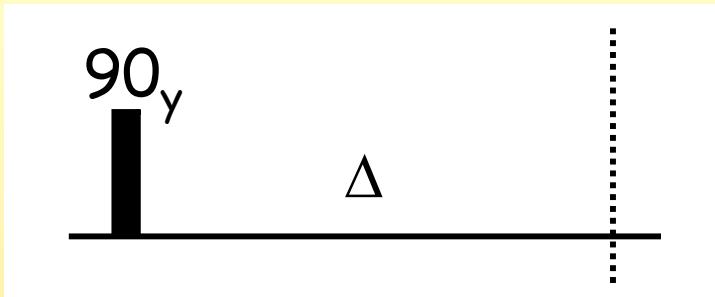
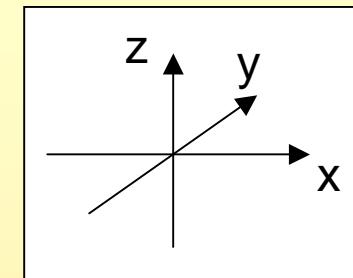
Building blocks



$$\begin{aligned}
 & H_x \cos \Omega_H \Delta \cos \Omega_H t_{aq} + H_y \cos \Omega_H \Delta \sin \Omega_H t_{aq} \\
 & H_y \sin \Omega_H \Delta \cos \Omega_H t_{aq} - H_x \sin \Omega_H \Delta \sin \Omega_H t_{aq} \\
 & = H_x \cos \Omega_H (\Delta + t_{aq}) + H_y \sin \Omega_H (\Delta + t_{aq}) \\
 & = H \exp i \Omega_H (\Delta + t_{aq}) = H \exp i (\Omega_H \Delta) \exp i (\Omega_H t_{aq})
 \end{aligned}$$

Obviously all signals acquire a phase that is dependent on the chemical shift, no phase correction is thus possible in a simple 1D spectrum

Building blocks

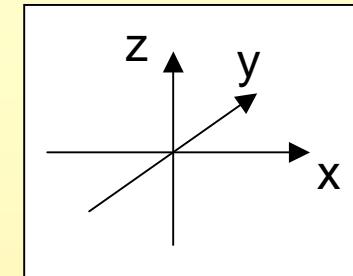
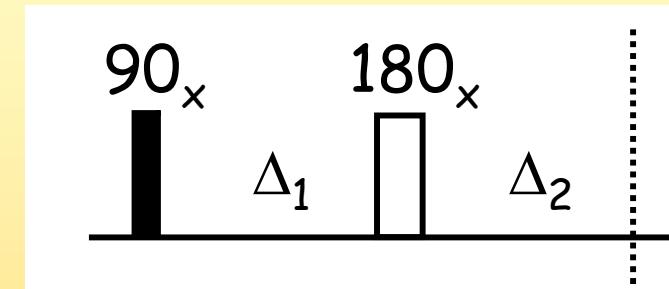


This is solved by keeping Δ short.

$$\exp(\Omega_H \Delta) = 1 + \Omega_H \Delta \text{ for small values of } \Omega_H \Delta$$

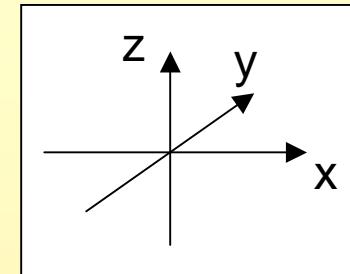
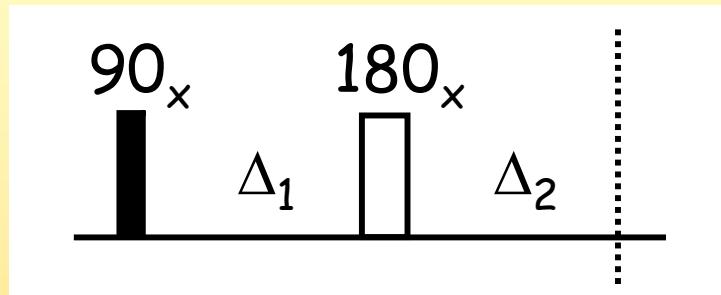
We see that in this case a linear phase correction (also called first order phase correction) is sufficient.

Building blocks



This sequence has already been inspected using the vector model, the result should be the same:
No chemical shift, homonuclear but no heteronuclear scalar coupling

Building blocks



First we do the calculation
for chemical shift δ_H

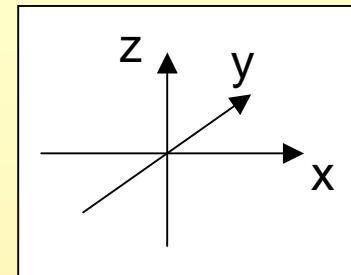
$$H_z \xrightarrow{90^\circ H_x} -H_y \xrightarrow{\delta_H \Delta_1} -H_y \cos \delta_H \Delta_1 + H_x \sin \delta_H \Delta_1$$

$$\xrightarrow{180^\circ H_x} H_y \cos \delta_H \Delta_1 + H_x \sin \delta_H \Delta_1$$

$$\xrightarrow{\delta_H \Delta_2} H_y \cos \delta_H \Delta_1 \cos \delta_H \Delta_2 - H_x \cos \delta_H \Delta_1 \sin \delta_H \Delta_2$$

$$H_x \sin \delta_H \Delta_1 \cos \delta_H \Delta_2 + H_y \sin \delta_H \Delta_1 \sin \delta_H \Delta_2$$

Building blocks



$$H_y \cos \delta_H \Delta_1 \cos \delta_H \Delta_2 - H_x \cos \delta_H \Delta_1 \sin \delta_H \Delta_2$$

$$H_x \sin \delta_H \Delta_1 \cos \delta_H \Delta_2 + H_y \sin \delta_H \Delta_1 \sin \delta_H \Delta_2$$

$$= H_y \cos \delta_H (\Delta_1 - \Delta_2) + H_x \sin \delta_H (\Delta_1 - \Delta_2)$$

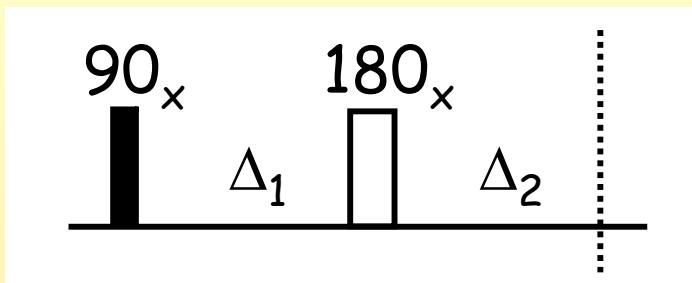
if $\Delta_1 = \Delta_2 = \Delta$

$$= H_y$$

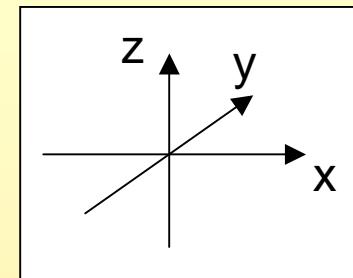
i.e. chemical shift has vanished in the end, it has been „refocussed“ !

(as we have seen in the vector model)

Building blocks



Now we calculate
homonuclear coupling J_{HH}



$$H_{1z} \xrightarrow{90^\circ H_x} -H_{1y} \xrightarrow{\pi J_{HH} \Delta_1} -H_{1y} \cos \pi J_{HH} \Delta_1 + 2H_{1x} H_{2z} \sin \pi J_{HH} \Delta_1$$

$$\begin{aligned} \xrightarrow{180^\circ H_x} & H_{1y} \cos \pi J_{HH} \Delta_1 - 2H_{1x} H_{2z} \sin \pi J_{HH} \Delta_1 \\ \xrightarrow{\pi J_{HH} \Delta_2} & H_{1y} \cos \pi J_{HH} \Delta_1 \cos \pi J_{HH} \Delta_2 \\ & - 2H_{1x} H_{2z} \cos \pi J_{HH} \Delta_1 \sin \pi J_{HH} \Delta_2 \\ & - 2H_{1x} H_{2z} \sin \pi J_{HH} \Delta_1 \cos \pi J_{HH} \Delta_2 \\ & - H_{1y} \sin \pi J_{HH} \Delta_1 \sin \pi J_{HH} \Delta_2 \end{aligned}$$

Building blocks

$$\begin{aligned}
 & H_{1y} \cos \pi J_{HH} \Delta_1 \cos \pi J_{HH} \Delta_2 - 2H_{1x} H_{2z} \cos \pi J_{HH} \Delta_1 \sin \pi J_{HH} \Delta_2 \\
 & - 2H_{1x} H_{2z} \sin \pi J_{HH} \Delta_1 \cos \pi J_{HH} \Delta_2 - H_{1y} \sin \pi J_{HH} \Delta_1 \sin \pi J_{HH} \Delta_2
 \end{aligned}$$

=

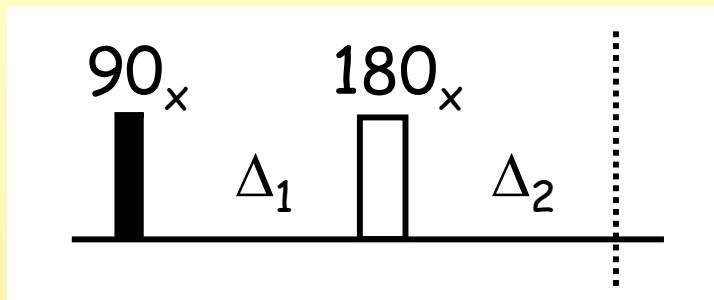
$$H_{1y} \cos \pi J_{HH} (\Delta_1 + \Delta_2) - 2H_{1x} H_{2z} \sin \pi J_{HH} (\Delta_1 + \Delta_2)$$

if $\Delta_1 = \Delta_2 = \Delta$

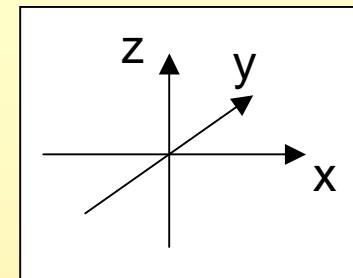
$$H_{1y} \cos \pi J_{HH} 2\Delta - 2H_{1x} H_{2z} \sin \pi J_{HH} 2\Delta$$

i.e. homonuclear coupling is still present at the end of the spin echo it has not been „refocussed“!

Building blocks



Finally heteronuclear
coupling J_{HX}



$$\begin{aligned}
 H_z &\xrightarrow{90^\circ H_x} -H_y \xrightarrow{\pi J_{HX} \Delta_1} -H_y \cos \pi J_{HX} \Delta_1 + 2H_x X_z \sin \pi J_{HX} \Delta_1 \\
 &\xrightarrow{180^\circ H_x} H_y \cos \pi J_{HX} \Delta_1 + 2H_x X_z \sin \pi J_{HX} \Delta_1 \\
 &\xrightarrow{\pi J_{HX} \Delta_2} H_y \cos \pi J_{HX} \Delta_1 \cos \pi J_{HX} \Delta_2 \\
 &\quad - 2H_x X_z \cos \pi J_{HX} \Delta_1 \sin \pi J_{HX} \Delta_2 \\
 &\quad + 2H_x H_z \sin \pi J_{HX} \Delta_1 \cos \pi J_{HX} \Delta_2 \\
 &\quad + H_y \sin \pi J_{HX} \Delta_1 \sin \pi J_{HX} \Delta_2
 \end{aligned}$$

Building blocks

$$\begin{aligned} & H_y \cos \pi J_{HX} \Delta_1 \cos \pi J_{HX} \Delta_2 - 2H_x X_z \cos \pi J_{HX} \Delta_1 \sin \pi J_{HX} \Delta_2 \\ & + 2H_x H_z \sin \pi J_{HX} \Delta_1 \cos \pi J_{HX} \Delta_2 + H_y \sin \pi J_{HX} \Delta_1 \sin \pi J_{HX} \Delta_2 \end{aligned}$$

=

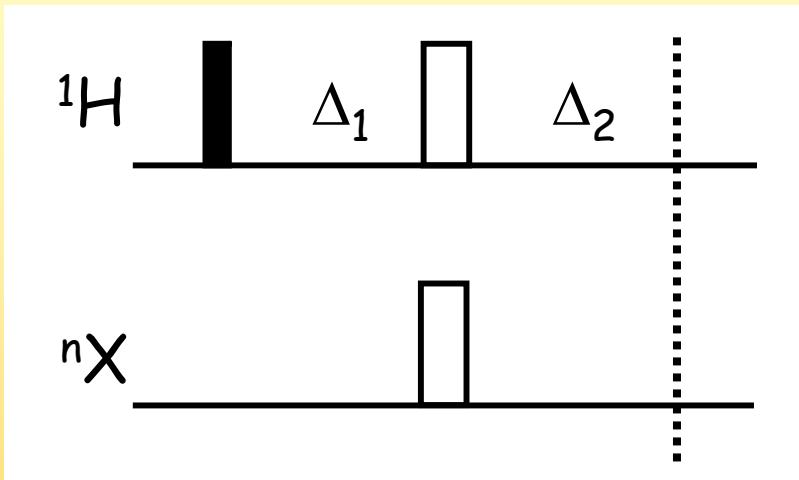
$$H_y \cos \pi J_{HX} (\Delta_1 - \Delta_2) - 2H_x X_z \sin \pi J_{HX} (\Delta_1 - \Delta_2)$$

if $\Delta_1 = \Delta_2 = \Delta$

$$H_y$$

i.e. heteronuclear coupling has vanished, it has been
refocussed!

Building blocks



chemical shift: δ_{H}

scalar (J-) coupling: $J_{\text{HH}}, J_{\text{HX}}$

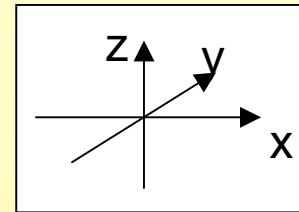
δ_{H} and J_{HH} are already known

δ_{H} refocussed if $\Delta_1 = \Delta_2$

J_{HH} not refocussed if $\Delta_1 = \Delta_2$

Building blocks

J_{HX} ?



$$H_z \xrightarrow{90^\circ H_x} -H_y \xrightarrow{\pi J_{HX} \Delta_1} -H_y \cos \pi J_{HX} \Delta_1 + 2H_x X_z \sin \pi J_{HX} \Delta_1$$

$$\xrightarrow[180^\circ X_x]{180^\circ H_x} H_y \cos \pi J_{HX} \Delta_1 - 2H_x X_z \sin \pi J_{HX} \Delta_1 \xrightarrow{\pi J_{HX} \Delta_2}$$

$$H_y \cos \pi J_{HX} \Delta_1 \cos \pi J_{HX} \Delta_2 - 2H_x X_z \cos \pi J_{HX} \Delta_1 \sin \pi J_{HX} \Delta_2$$

$$-2H_x H_z \sin \pi J_{HX} \Delta_1 \cos \pi J_{HX} \Delta_2 - H_y \sin \pi J_{HX} \Delta_1 \sin \pi J_{HX} \Delta_2$$

$$= H_y \cos \pi J_{HX} (\Delta_1 + \Delta_2) - 2H_x X_z \sin \pi J_{HX} (\Delta_1 + \Delta_2)$$

$$\text{if } \Delta_1 = \Delta_2 = \Delta : H_{1y} \cos \pi J_{HX} 2\Delta - 2H_{1x} H_{2z} \sin \pi J_{HX} 2\Delta$$

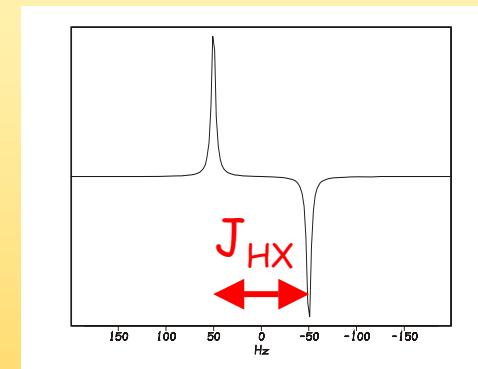
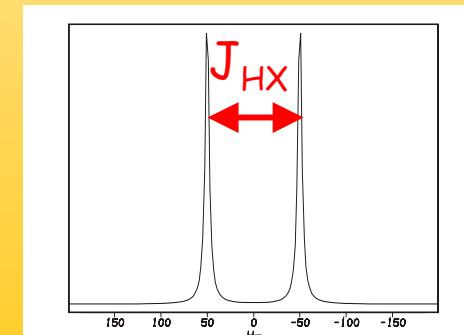
i.e. heteronuclear coupling is not refocussed any more !

Building blocks

$$H_y \cos \pi J_{HX} 2\Delta - 2H_x X_z \sin \pi J_{HX} 2\Delta$$

If $\Delta = 1/4J_{HX}$ is chosen $2H_x X_z$ is obtained, i.e. an anti-phase signal, that is quite often utilized in complex pulse sequences

If $\Delta = 1/2J_{HX}$ is chosen H_{1y} is obtained, i.e. an in-phase signal



Building blocks

but...

$$H_y \cos \pi J_{HX} 2\Delta - 2H_x X_z \sin \pi J_{HX} 2\Delta$$

If Δ is set to a value short relative to $1/2J$, then the coupling does hardly have an effect

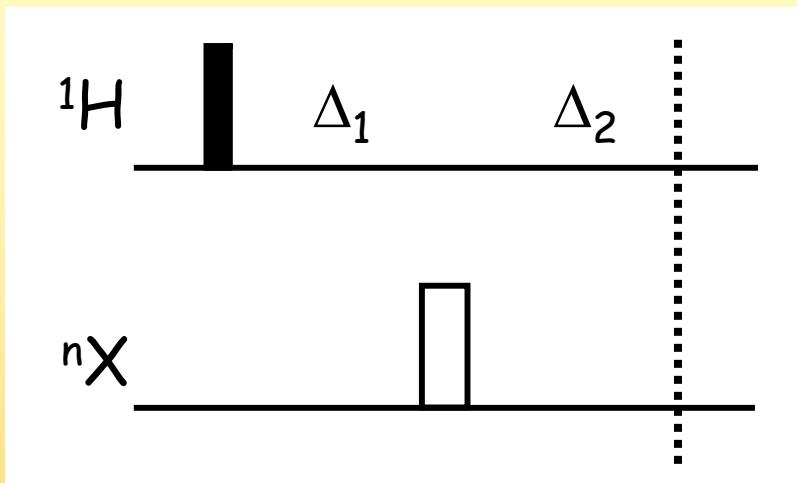
$$J = 5 \text{ Hz}, \quad 2\Delta = 5 \text{ msec} \ll 1/2J = 100 \text{ msec}$$

$$\cos \pi J_{HX} 2\Delta = 0.99$$

$$\sin \pi J_{HX} 2\Delta = 0.08$$

i.e. the coupling has not evolved noticeably

Building blocks



chemical shift: δ_H

scalar (J-) coupling: J_{HH}, J_{HX}

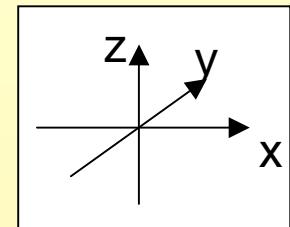
δ_H and J_{HH} are already known

δ_H not refocussed if $\Delta_1 = \Delta_2$

J_{HH} not refocussed if $\Delta_1 = \Delta_2$

Building blocks

J_{HX} ?



$$H_z \xrightarrow{90^\circ H_x} -H_y \xrightarrow{\pi J_{HX} \Delta_1} -H_y \cos \pi J_{HX} \Delta_1 + 2H_x X_z \sin \pi J_{HX} \Delta_1$$

$$\xrightarrow{180^\circ X_x} -H_y \cos \pi J_{HX} \Delta_1 - 2H_x X_z \sin \pi J_{HX} \Delta_1 \xrightarrow{\pi J_{HX} \Delta_2}$$

$$-H_y \cos \pi J_{HX} \Delta_1 \cos \pi J_{HX} \Delta_2 + 2H_x X_z \cos \pi J_{HX} \Delta_1 \sin \pi J_{HX} \Delta_2$$

$$-2H_x H_z \sin \pi J_{HX} \Delta_1 \cos \pi J_{HX} \Delta_2 - H_y \sin \pi J_{HX} \Delta_1 \sin \pi J_{HX} \Delta_2$$

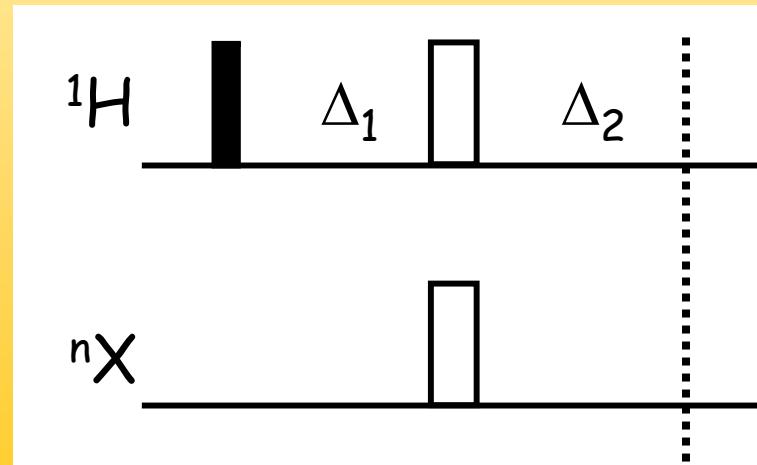
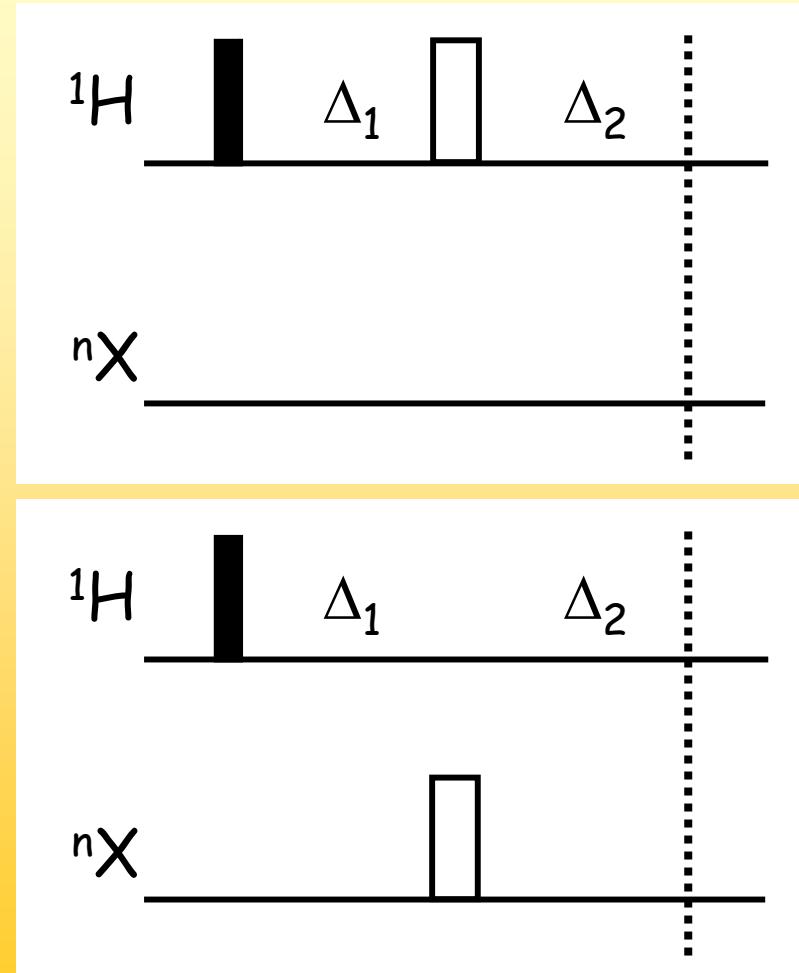
$$= -H_y \cos \pi J_{HX} (\Delta_1 - \Delta_2) - 2H_x X_z \sin \pi J_{HX} (\Delta_1 - \Delta_2)$$

$$\text{if } \Delta_1 = \Delta_2 = \Delta : -H_y$$

i.e. heteronucleare coupling is again refocussed !

Building blocks

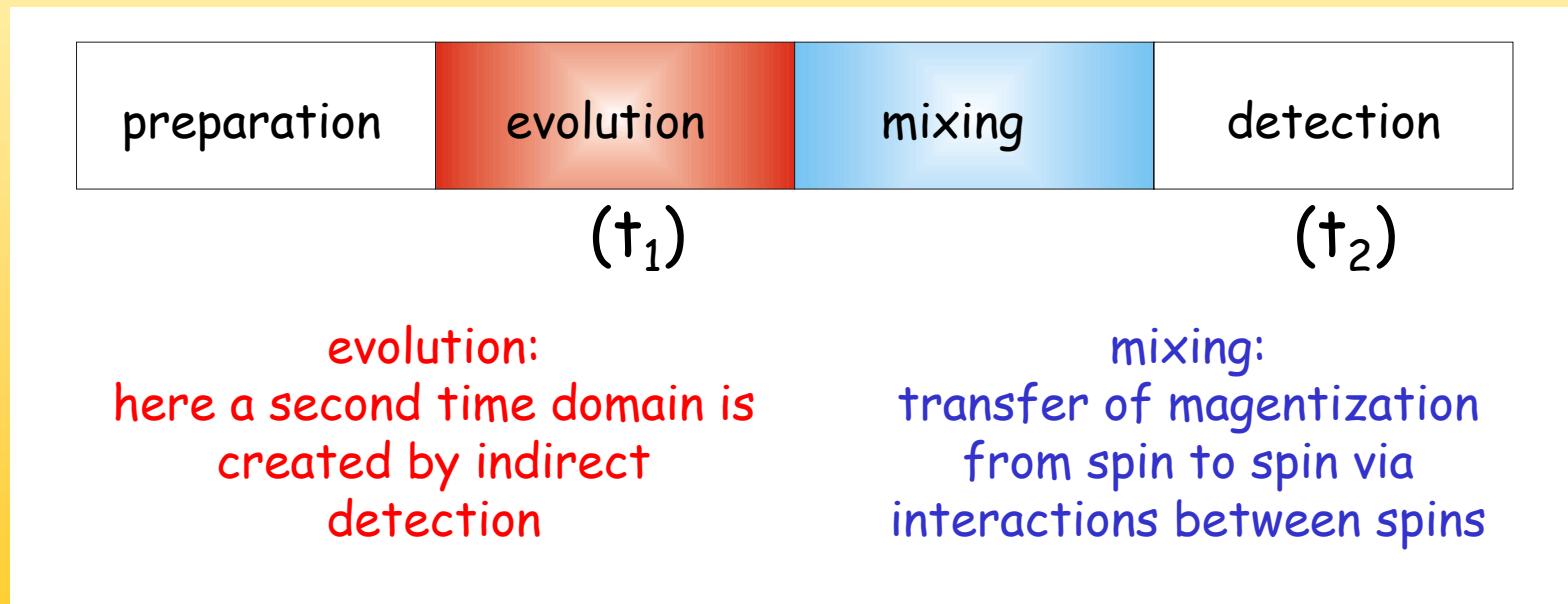
Those „building blocks“
are now known and we do
not need to recalculate
them later on



Two-dimensional NMR-spectroscopy: The COSY

2D NMR: COSY

2D-NMR sequences contain
two new elements:
evolution time and mixing time

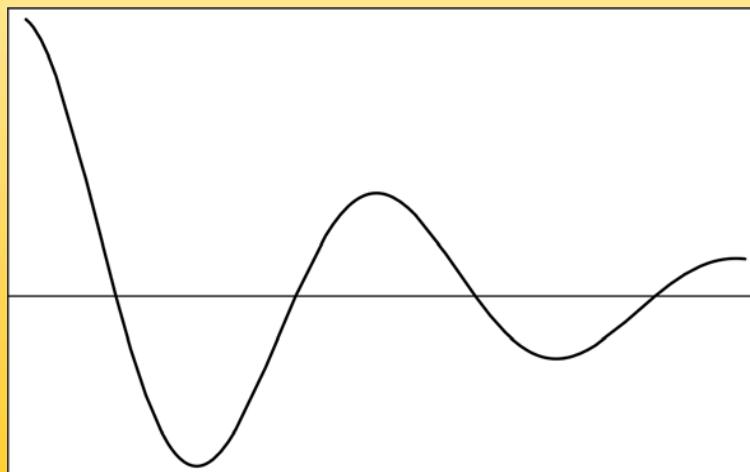


2D NMR: COSY

The NMR signal that is recorded during the acquisition is a damped cosine (we look only at the real part)

$$s(t) = \exp(-t/T_2) \exp(i\Omega_0 t)$$

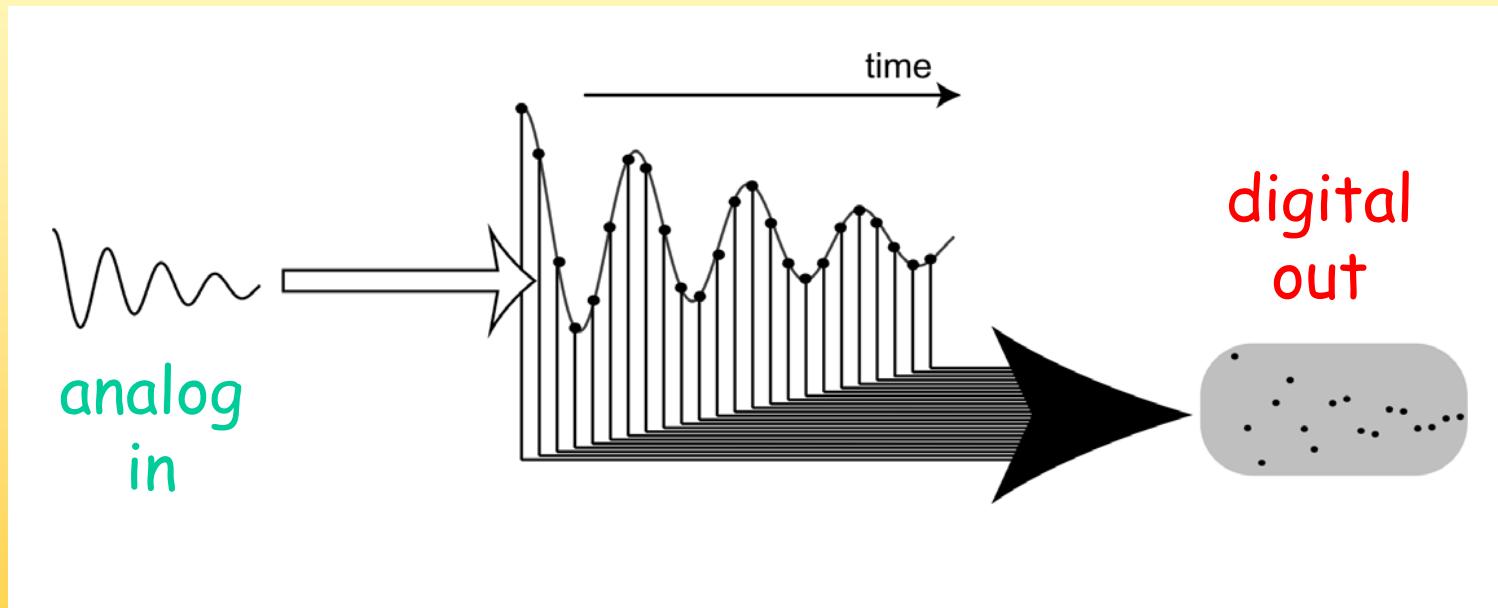
$$s(t) = \exp((i\Omega_0 - 1/T_2) t)$$



2D NMR: COSY

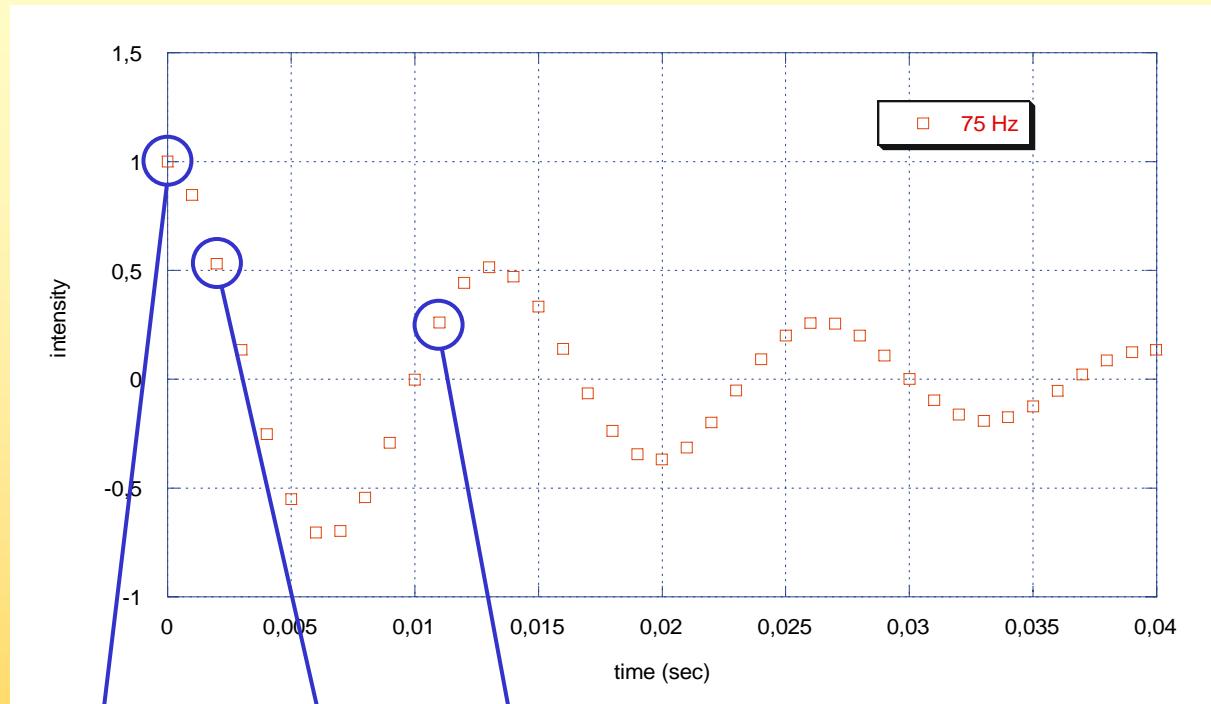
To analyze the signal we need to digitize it

$$s(t) = \exp((i\Omega_0 - 1/T_2)t)$$



$$s(k\Delta t) = \exp((i\Omega_0 - 1/T_2)k\Delta t)$$

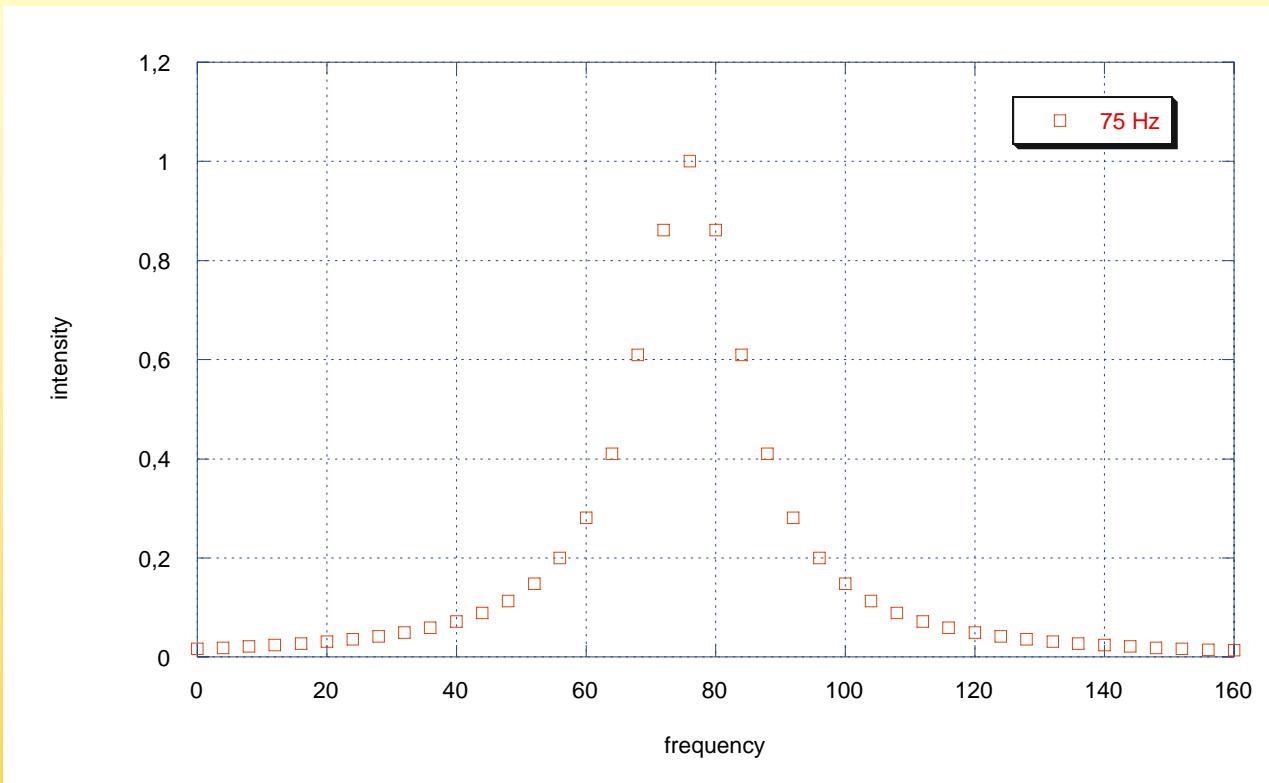
2D NMR: COSY



The FID is converted into a series of data points

$$\begin{aligned}
 s(11\Delta t) &= \exp((i\Omega_0 - 1/\tau_2) 11\Delta t) \\
 s(2\Delta t) &= \exp((i\Omega_0 - 1/\tau_2) 2\Delta t) \\
 s(0\Delta t) = s(0) &= \exp((i\Omega_0 - 1/\tau_2) 0) = 1
 \end{aligned}$$

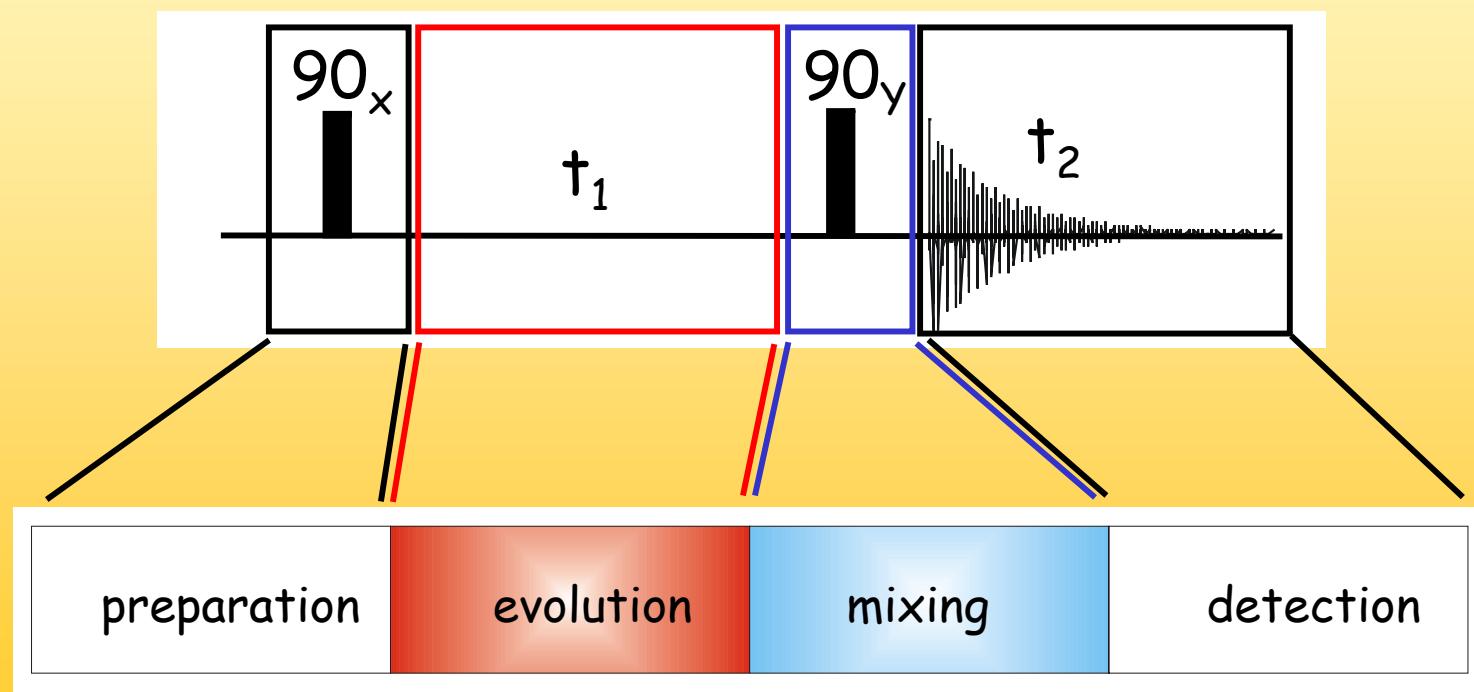
2D NMR: COSY



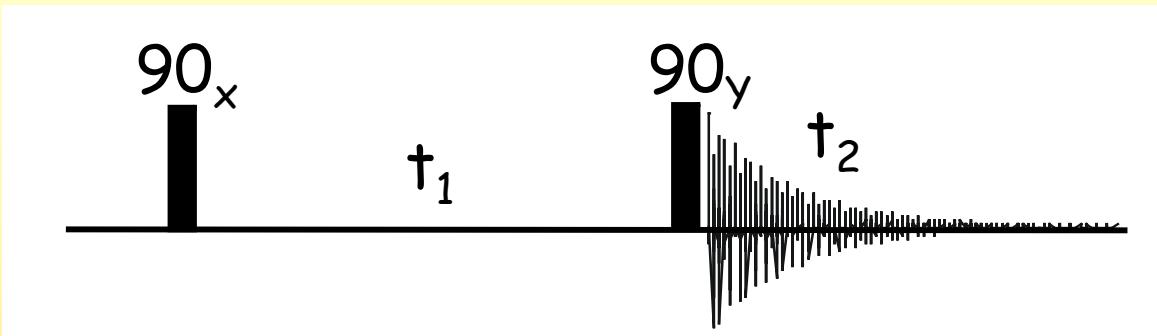
A digital Fourier transformation (DFT) converts that into another series of data points the spectrum

2D NMR: COSY

The simplest two-dimensional spectrum is the COSY



2D NMR: COSY



We consider two protons with $\Omega_{H1} = 2\pi\delta_{H1}$ and $\Omega_{H2} = 2\pi\delta_{H2}$

$$H_{1z} \xrightarrow{90^\circ H_x} -H_{1y} \xrightarrow{2\pi\delta_{H1}t_1} -H_{1y} \cos 2\pi\delta_{H1}t_1 + H_{1x} \sin 2\pi\delta_{H1}t_1$$

$$\xrightarrow{90^\circ H_x} -H_{1y} \cos 2\pi\delta_{H1}t_1 - H_{1z} \sin 2\pi\delta_{H1}t_1$$

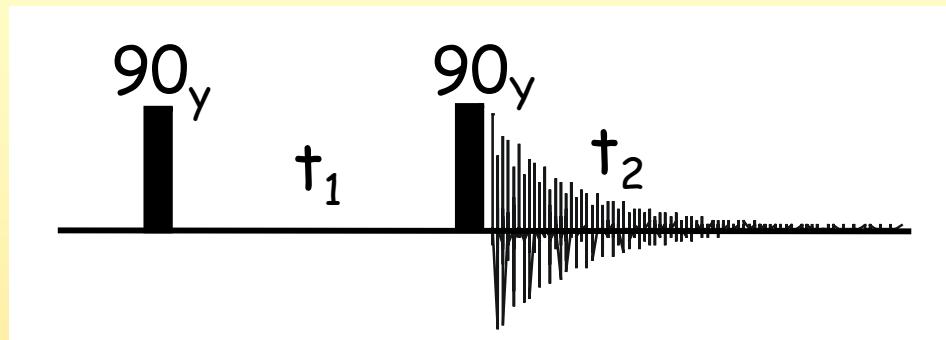
not detectable

$$\xrightarrow{2\pi\delta_{H1}t_2} -H_{1y} \cos 2\pi\delta_{H1}t_1 \cos 2\pi\delta_{H1}t_2 + H_{1x} \cos 2\pi\delta_{H1}t_1 \sin 2\pi\delta_{H1}t_2$$

$$-H_1 \cos 2\pi\delta_{H1}t_1 \exp 2\pi\delta_{H1}t_2$$

Quadraturdetektion

2D NMR: COSY



To achieve quadrature detection in the indirect dimension we do a second experiment

$$H_{1z} \xrightarrow{90^\circ H_y} H_{1x} \xrightarrow{2\pi\delta_{H1}t_1} H_{1x} \cos 2\pi\delta_{H1}t_1 + H_{1y} \sin 2\pi\delta_{H1}t_1$$

$$\xrightarrow{90^\circ H_y} -H_{1z} \cos 2\pi\delta_{H1}t_1 + H_{1y} \sin 2\pi\delta_{H1}t_1$$

not detectable

$$\xrightarrow{2\pi\delta_{H1}t_2}$$

$$H_{1y} \sin 2\pi\delta_{H1}t_1 \cos 2\pi\delta_{H1}t_2 + H_{1x} \sin 2\pi\delta_{H1}t_1 \sin 2\pi\delta_{H1}t_2$$

$$H_1 \sin 2\pi\delta_{H1}t_1 \exp 2\pi\delta_{H1}t_2$$

2D NMR: COSY

Taken together we have a „hypercomplex“ signal

$$H_1 \cos 2\pi\delta_{H1}t_1 \exp 2\pi\delta_{H1}t_2 \text{ und } H_1 \sin 2\pi\delta_{H1}t_1 \exp 2\pi\delta_{H1}t_2$$

$$= H_1 \exp 2\pi\delta_{H1}t_1 \exp 2\pi\delta_{H1}t_2$$

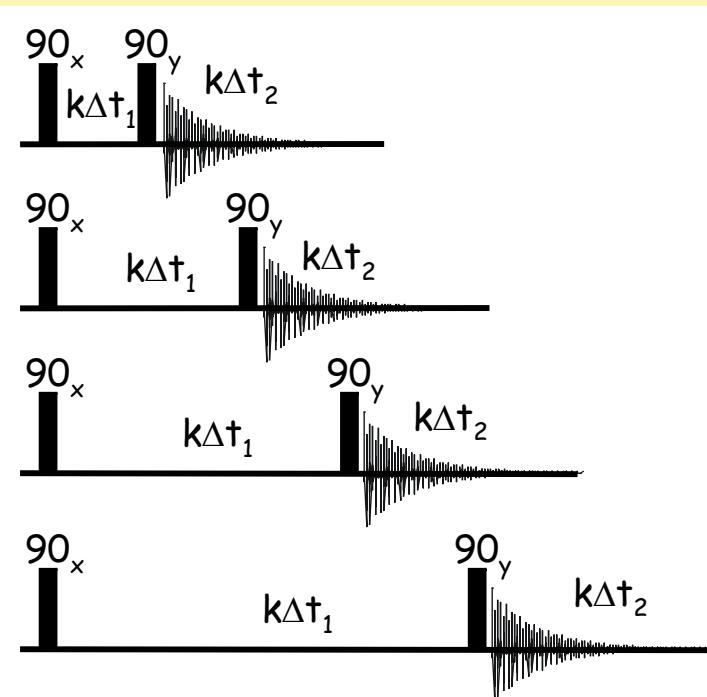
$$= H_1 \exp 2\pi\delta_{H1} (k \Delta t_1)$$

$$\times \exp 2\pi\delta_{H1} (k \Delta t_2)$$

This is done by the
incrementation of
 Δt_1

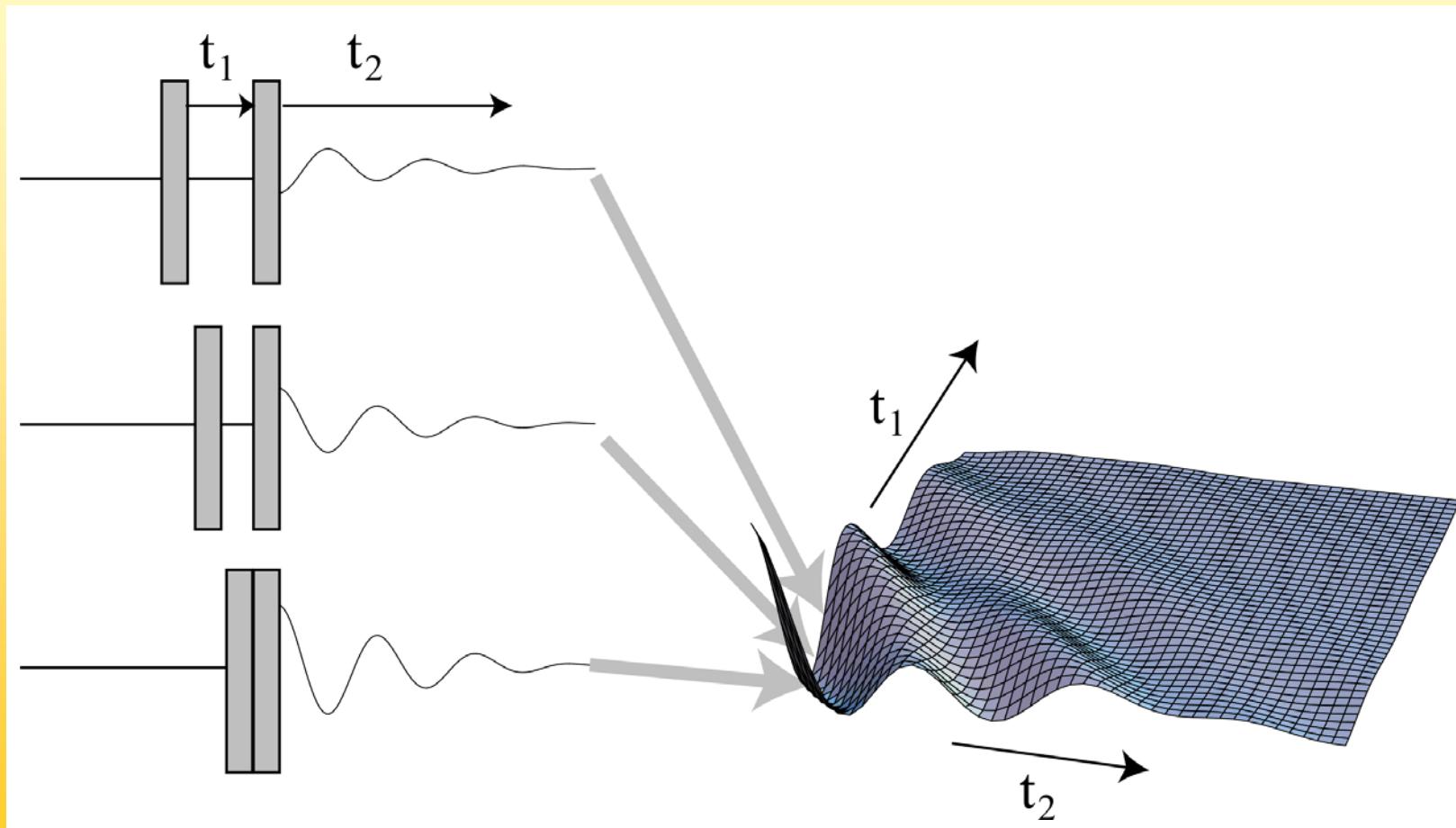
This is done
by the ADC

We obtain a two-dimensional
area of data points

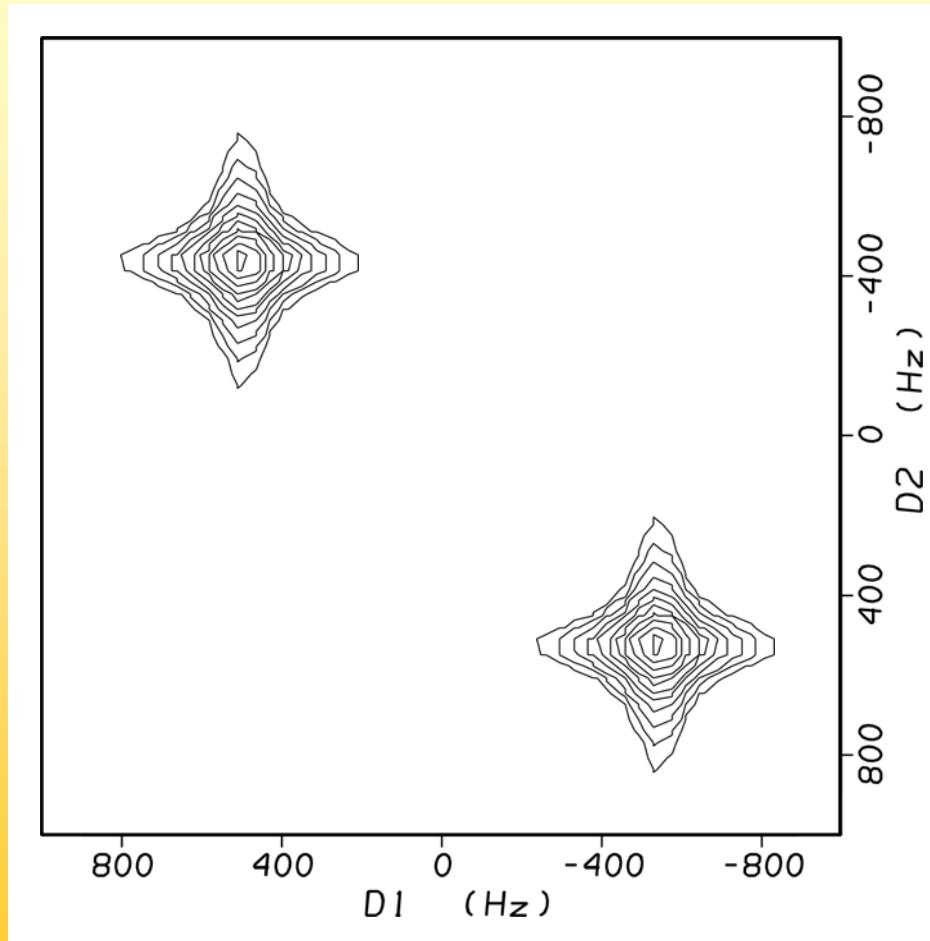


2D NMR: COSY

..... a two-dimensional FID



2D NMR: COSY



After two FTs we
get our well known
2D spectrum

2D NMR: COSY

But up to know we have the same information on both axes

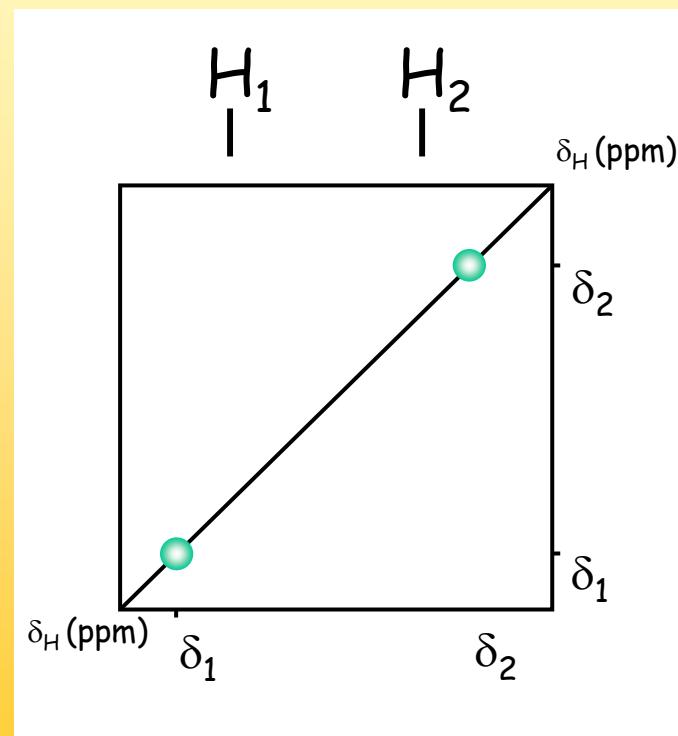
$$H_1 \exp 2\pi\delta_{H1}t_1 \exp 2\pi\delta_{H1}t_2 =$$

$$H_1 \exp 2\pi\delta_{H1} (k \Delta t_1)$$

$$\exp 2\pi\delta_{H1} (k \Delta t_2)$$

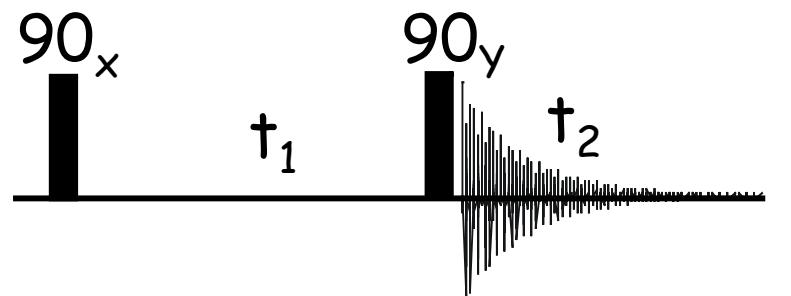
(the same for H_2)

We have created a second dimension by incrementing during the evolution time but our spectrum has only a diagonal



2D NMR: COSY

Now we remember that mixing is achieved via coupling and we calculate for J_{HH} as well



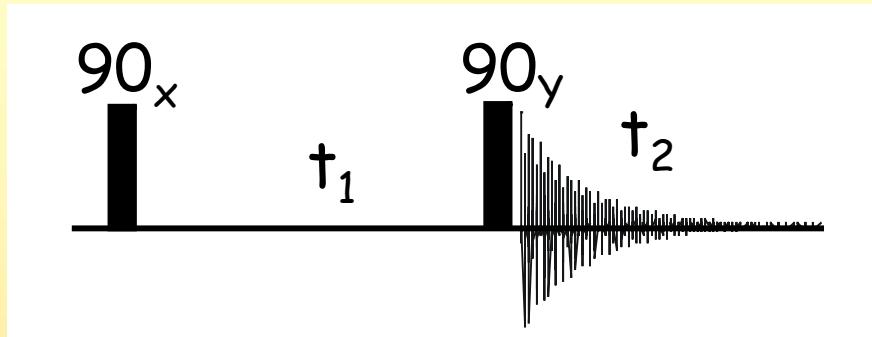
$$H_{1z} \xrightarrow{90^\circ H_x} -H_{1y} \xrightarrow{2\pi\delta_{H1}t_1} -H_{1y} \cos 2\pi\delta_{H1}t_1 + H_{1x} \sin 2\pi\delta_{H1}t_1$$

Watch this operator !!

$$\xrightarrow{\pi J_{HH}t_1}$$

$$\begin{aligned} & -H_{1y} \cos 2\pi\delta_{H1}t_1 \cos \pi J_{HH}t_1 + 2H_{1x}H_{2z} \cos 2\pi\delta_{H1}t_1 \sin \pi J_{HH}t_1 \\ & + H_{1x} \sin 2\pi\delta_{H1}t_1 \cos \pi J_{HH}t_1 + 2H_{1y}H_{2z} \sin 2\pi\delta_{H1}t_1 \sin \pi J_{HH}t_1 \end{aligned}$$

2D NMR: COSY



Then the second 90° pulse

Here is where the transfer takes place !!

$90^\circ H_y$

$$-H_{1y} \cos 2\pi\delta_{H1}t_1 \cos \pi J_{HH}t_1 - 2H_{1z}H_{2x} \cos 2\pi\delta_{H1}t_1 \sin \pi J_{HH}t_1$$

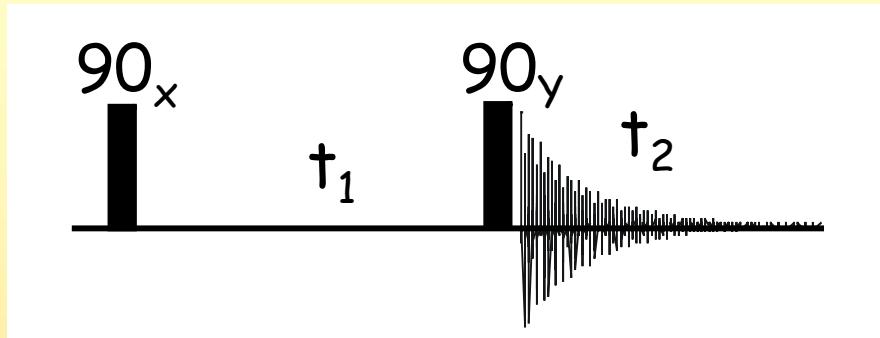
$$\cancel{-H_{1z} \sin 2\pi\delta_{H1}t_1 \cos \pi J_{HH}t_1} + \cancel{2H_{1y}H_{2x} \sin 2\pi\delta_{H1}t_1 \sin \pi J_{HH}t_1}$$

not detectable

two types of detectable magnetization remain

$$-H_{1y} \cos 2\pi\delta_{H1}t_1 \cos \pi J_{HH}t_1 - 2H_{1z}H_{2x} \cos 2\pi\delta_{H1}t_1 \sin \pi J_{HH}t_1$$

2D NMR: COSY

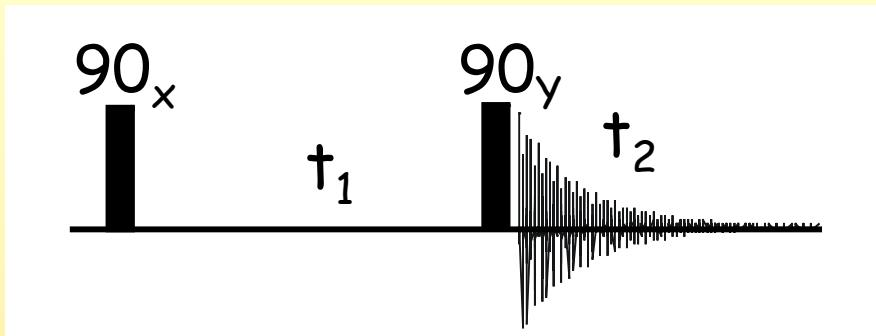


Then we start the acquisition

$$- H_{1y} \cos 2\pi\delta_{H1}t_1 \cos \pi J_{HH}t_1 - 2H_{1z}H_{2x} \cos 2\pi\delta_{H1}t_1 \sin \pi J_{HH}t_1$$

$$\begin{aligned}
 & \xrightarrow{\delta_H t_2} - H_{1y} \cos 2\pi \boxed{\delta_{H1}t_1} \cos \pi J_{HH}t_1 \cos 2\pi \boxed{\delta_{H1}t_2} \quad \text{H1 !} \\
 & + H_{1x} \cos 2\pi \boxed{\delta_{H1}t_1} \cos \pi J_{HH}t_1 \sin 2\pi \boxed{\delta_{H1}t_2} \\
 & - 2H_{1z}H_{2x} \cos 2\pi \boxed{\delta_{H1}t_1} \sin \pi J_{HH}t_1 \cos 2\pi \boxed{\delta_{H2}t_2} \\
 & - 2H_{1z}H_{2y} \cos 2\pi \boxed{\delta_{H1}t_1} \sin \pi J_{HH}t_1 \sin 2\pi \boxed{\delta_{H2}t_2} \quad \text{H2 !}
 \end{aligned}$$

2D NMR: COSY

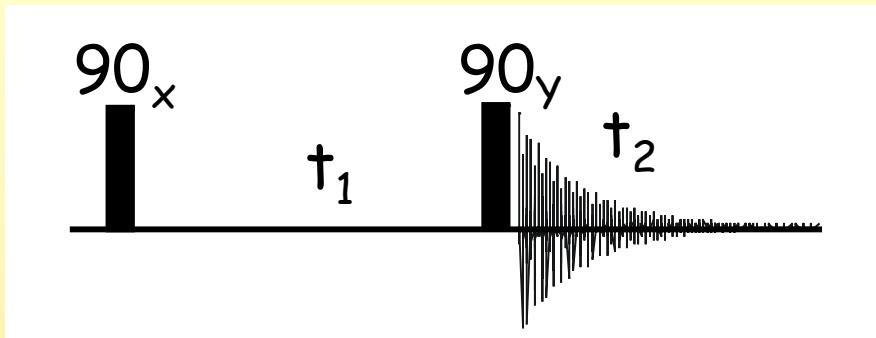


we focus on detectable magnetization

$$\begin{aligned}
 & \xrightarrow{\pi J_{HH} t_2} \\
 & - H_{1y} \cos 2\pi\delta_{H1} t_1 \cos \pi J_{HH} t_1 \cos 2\pi\delta_{H1} t_2 \cos \pi J_{HH} t_2 \\
 & + H_{1x} \cos 2\pi\delta_{H1} t_1 \cos \pi J_{HH} t_1 \sin 2\pi\delta_{H1} t_2 \cos \pi J_{HH} t_2 \quad \text{Im !} \\
 & - H_{2y} \cos 2\pi\delta_{H1} t_1 \sin \pi J_{HH} t_1 \cos 2\pi\delta_{H2} t_2 \sin \pi J_{HH} t_2 \\
 & + H_{2x} \cos 2\pi\delta_{H1} t_1 \sin \pi J_{HH} t_1 \sin 2\pi\delta_{H2} t_2 \sin \pi J_{HH} t_2 \quad \text{Im !}
 \end{aligned}$$

The calculation for the second FID (1. pulse 90°_y) is omitted !

2D NMR: COSY



As a result of our calculation we get:
(only the real part is given)

- $- H_{1y} \cos 2\pi\delta_{H1}t_1 \cos \pi J_{HH}t_1 \cos 2\pi\delta_{H1}t_2 \cos \pi J_{HH}t_2$
- $- H_{2y} \cos 2\pi\delta_{H1}t_1 \sin \pi J_{HH}t_1 \cos 2\pi\delta_{H2}t_2 \sin \pi J_{HH}t_2$

In t_1 immer die
Verschiebung von
H1

In t_2 die
Verschiebung von
H1 oder H2

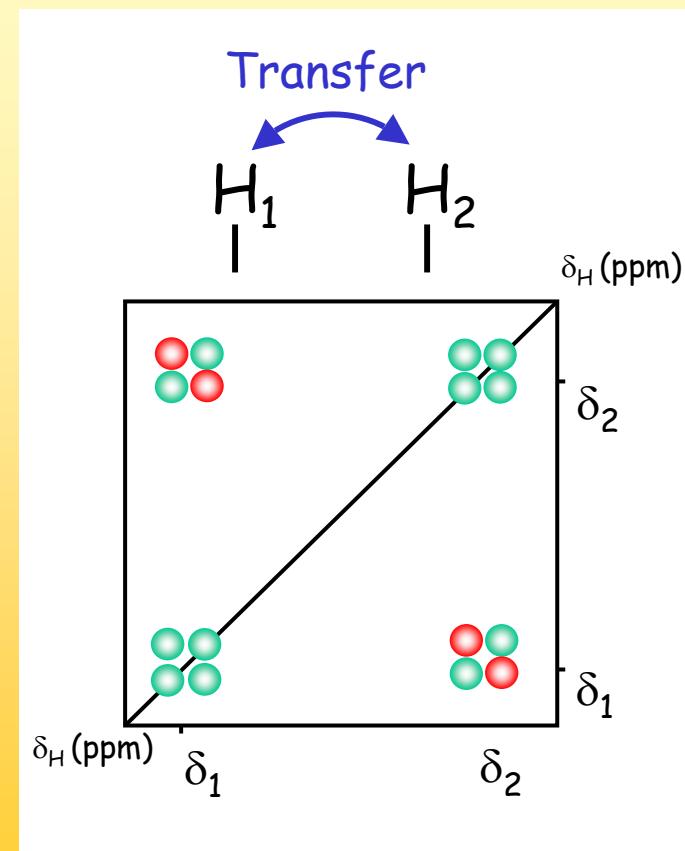
2D NMR: COSY

Now something new has shown up:

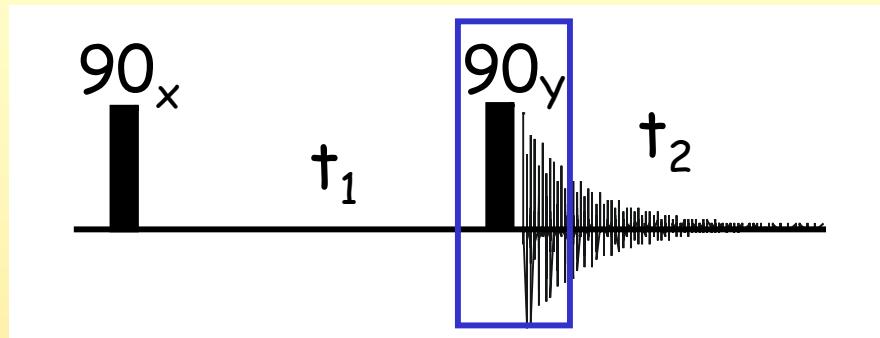
There are signals that have been labeled with different chemical shifts in both dimensions:

the **crosspeaks**

A transfer of magnetization has taken place



2D NMR: COSY



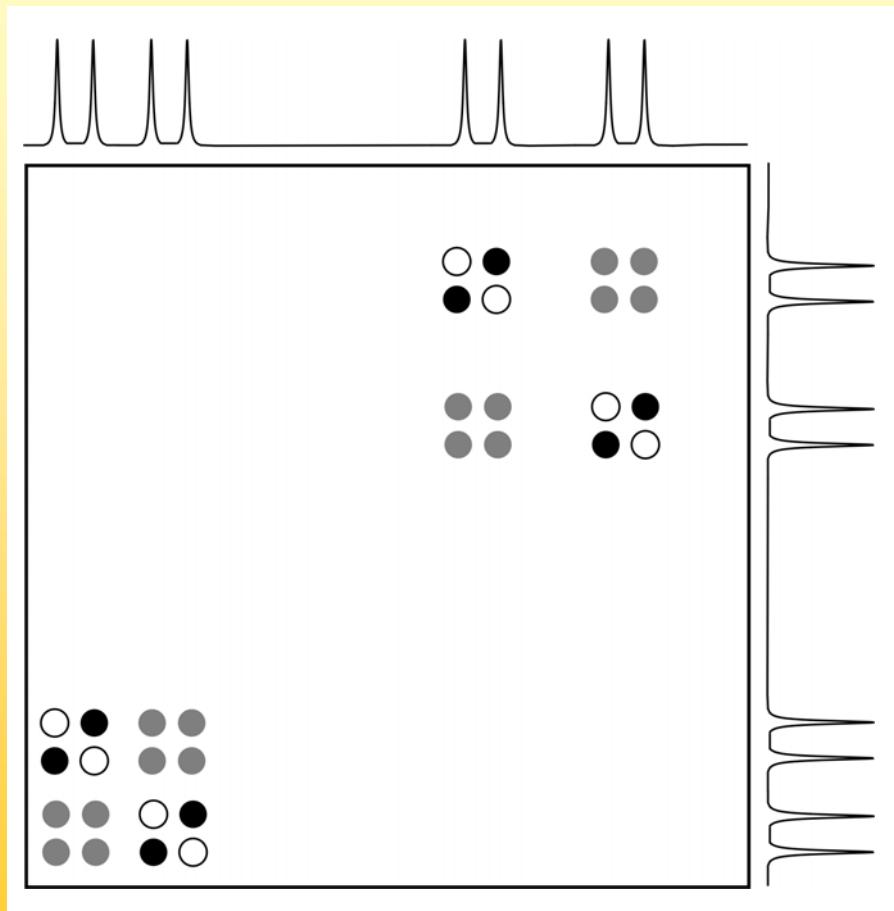
CO_Rrelation S_{pectroscop}Y =
COSY

The „mixing time“ is a simple 90° pulse in this case.

It causes a transfer of magnetization.

Cross peaks in a 2D spectrum thus indicate the presence of a scalar coupling between the two nuclei whose frequencies intersect at the position of the cross peak.

2D NMR: COSY



We will now take a look at
the fine structure of the
peaks

2D NMR: COSY

- $- H_{1y} \cos 2\pi\delta_{H1}t_1 \cos \pi J_{HH}t_1 \cos 2\pi\delta_{H1}t_2 \cos \pi J_{HH}t_2$
- $- H_{2y} \cos 2\pi\delta_{H1}t_1 \sin \pi J_{HH}t_1 \cos 2\pi\delta_{H2}t_2 \sin \pi J_{HH}t_2$

Let's use our trigonometric formulas

$$\begin{aligned}
 &= -H_{1y} \frac{1}{2} [\cos 2\pi(\delta_{H1} + J_{HH}/2)t_1 + \cos 2\pi(\delta_{H1} - J_{HH}/2)t_1] \times \\
 &\quad \frac{1}{2} [\cos 2\pi(\delta_{H1} + J_{HH}/2)t_2 + \cos 2\pi(\delta_{H1} - J_{HH}/2)t_2] \\
 &- H_{2y} \frac{1}{2} [\sin 2\pi(\delta_{H1} + J_{HH}/2)t_1 - \sin 2\pi(2\pi\delta_{H1} - J_{HH}/2)t_1] \times \\
 &\quad \frac{1}{2} [\sin 2\pi(\delta_{H2} + J_{HH}/2)t_2 - \sin 2\pi(\delta_{H2} - J_{HH}/2)t_2]
 \end{aligned}$$

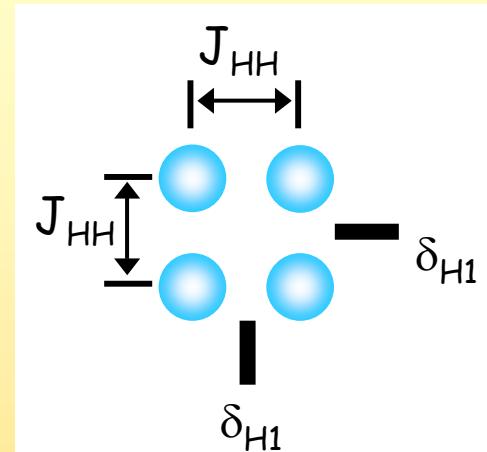
2D NMR: COSY

$$\begin{aligned}
 &= -H_{1y} \frac{1}{2} [\cos 2\pi(\delta_{H1} + J_{HH}/2) \mathbf{t}_1 + \cos 2\pi(\delta_{H1} - J_{HH}/2) \mathbf{t}_1] \times \\
 &\quad \frac{1}{2} [\cos 2\pi(\delta_{H1} + J_{HH}/2) \mathbf{t}_2 + \cos 2\pi(\delta_{H1} - J_{HH}/2) \mathbf{t}_2] \\
 &- H_{2y} \frac{1}{2} [\sin 2\pi(\delta_{H1} + J_{HH}/2) \mathbf{t}_1 - \sin 2\pi(2\pi\delta_{H1} - J_{HH}/2) \mathbf{t}_1] \times \\
 &\quad \frac{1}{2} [\sin 2\pi(\delta_{H2} + J_{HH}/2) \mathbf{t}_2 - \sin 2\pi(\delta_{H2} - J_{HH}/2) \mathbf{t}_2]
 \end{aligned}$$

We get a total of 8 peaks, 4 with a cosine and with δ_{H1} in both dimensions, 4 with a sine and with different chemical shifts in both dimensions

2D NMR: COSY

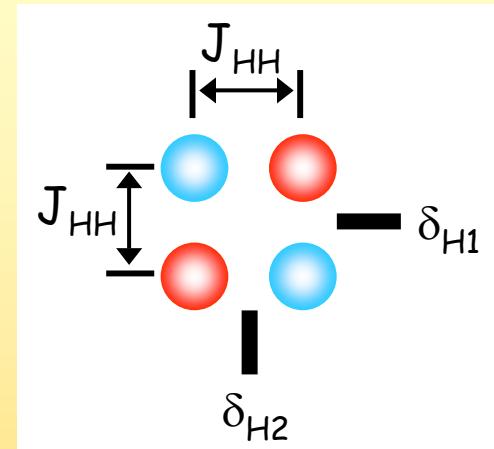
The first four are all positive (**in-phase**), they have δ_{H1} in both dimensions (**diagonal signal**) and all are resulting from cosine functions



$$\begin{aligned}
 & + H_1 \cos 2\pi(\delta_{H1} + J_{HH}/2)t_1 \cos 2\pi(\delta_{H1} + J_{HH}/2)t_2 \\
 & + H_1 \cos 2\pi(\delta_{H1} + J_{HH}/2)t_1 \cos 2\pi(\delta_{H1} - J_{HH}/2)t_2 \\
 & + H_1 \cos 2\pi(\delta_{H1} - J_{HH}/2)t_1 \cos 2\pi(\delta_{H1} + J_{HH}/2)t_2 \\
 & + H_1 \cos 2\pi(\delta_{H1} - J_{HH}/2)t_1 \cos 2\pi(\delta_{H1} - J_{HH}/2)t_2
 \end{aligned}$$

2D NMR: COSY

The second four have alternating signs (**anti-phase**), different chemical shifts (δ_{H1} and δ_{H2}) in the two dimensions (**cross peaks**) and all result from sine functions



$$\begin{aligned}
 & + H_2 \sin 2\pi(\delta_{H1} + J_{HH}/2) t_1 \sin 2\pi(\delta_{H2} + J_{HH}/2) t_2 \\
 & - H_2 \sin 2\pi(\delta_{H1} + J_{HH}/2) t_1 \sin 2\pi(\delta_{H2} - J_{HH}/2) t_2 \\
 & - H_2 \sin 2\pi(\delta_{H1} - J_{HH}/2) t_1 \sin 2\pi(\delta_{H2} + J_{HH}/2) t_2 \\
 & + H_2 \sin 2\pi(\delta_{H1} - J_{HH}/2) t_1 \sin 2\pi(\delta_{H2} - J_{HH}/2) t_2
 \end{aligned}$$

2D NMR: COSY

We thus have a problem with phase

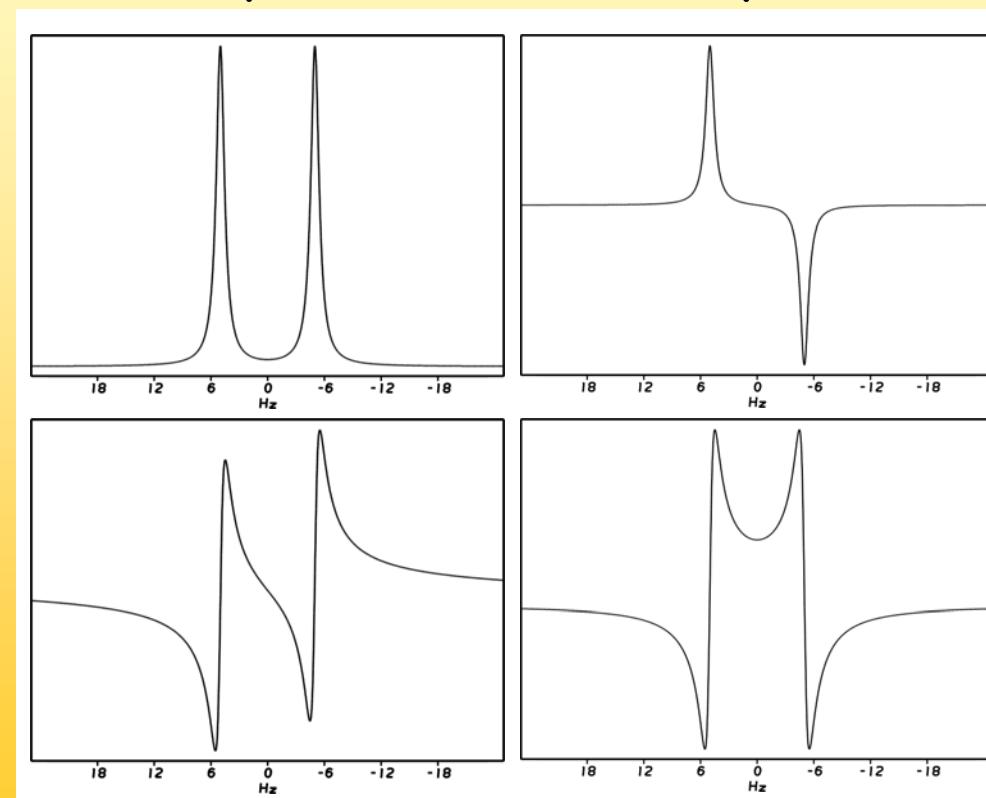
in-phase

anti-phase

absorbtiv

$\Delta\phi = 90^\circ$
cos vs. sin

dispersiv



2D NMR: COSY

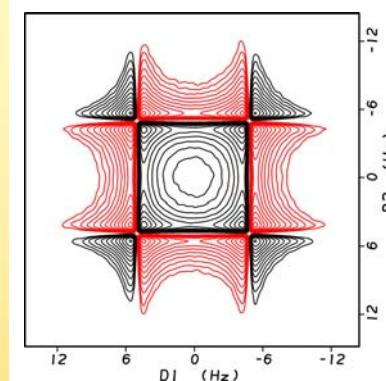
either

diagonal peak
absorptiv,
cross peak
dispersiv

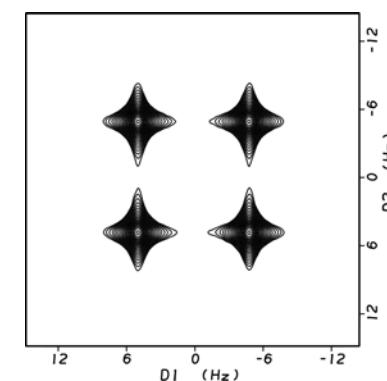
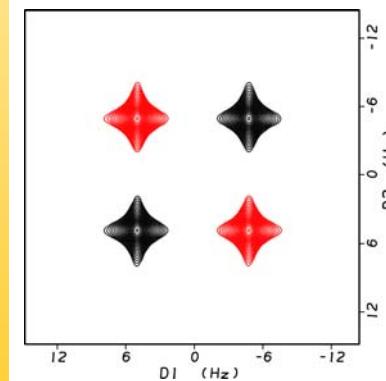
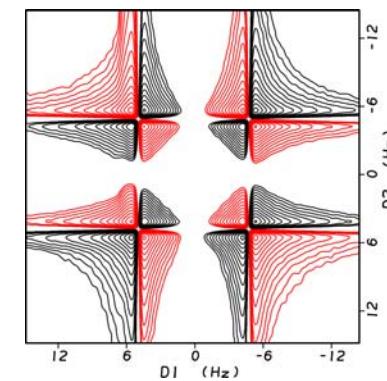
or

diagonal peak
dispersiv,
cross peak
absorptiv

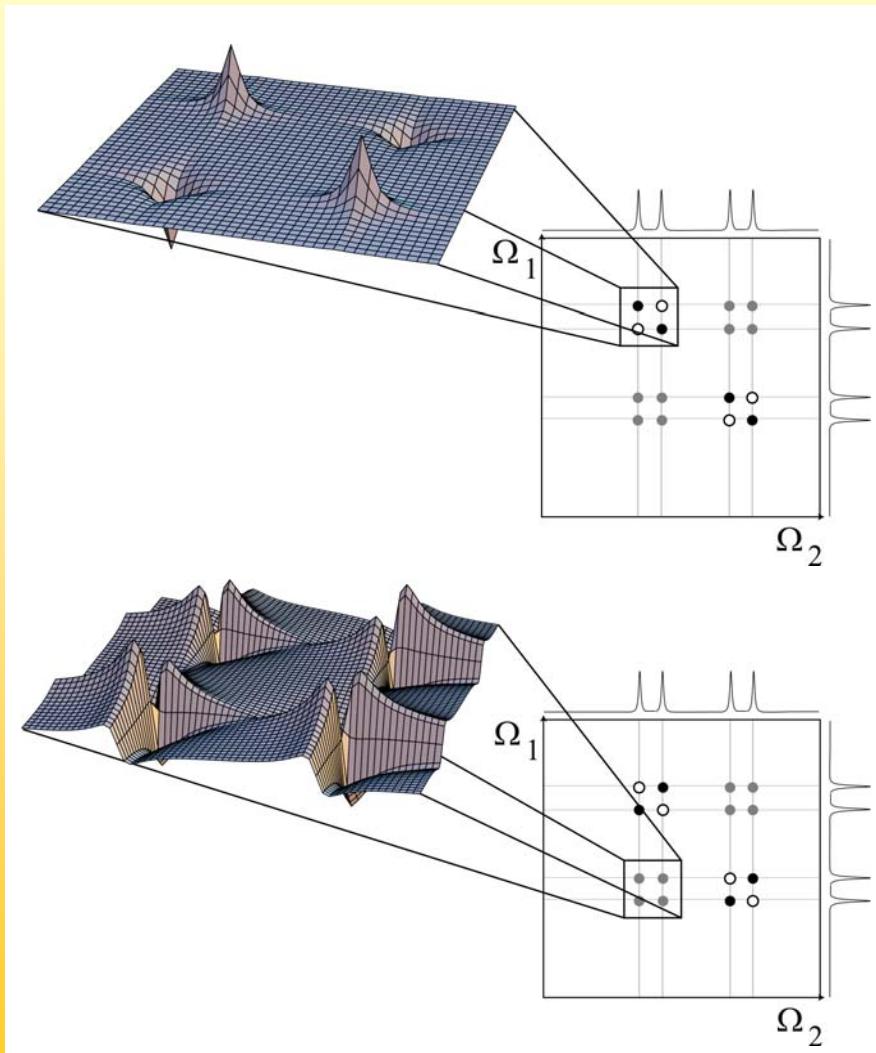
cross peak



diagonal peak



2D NMR: COSY

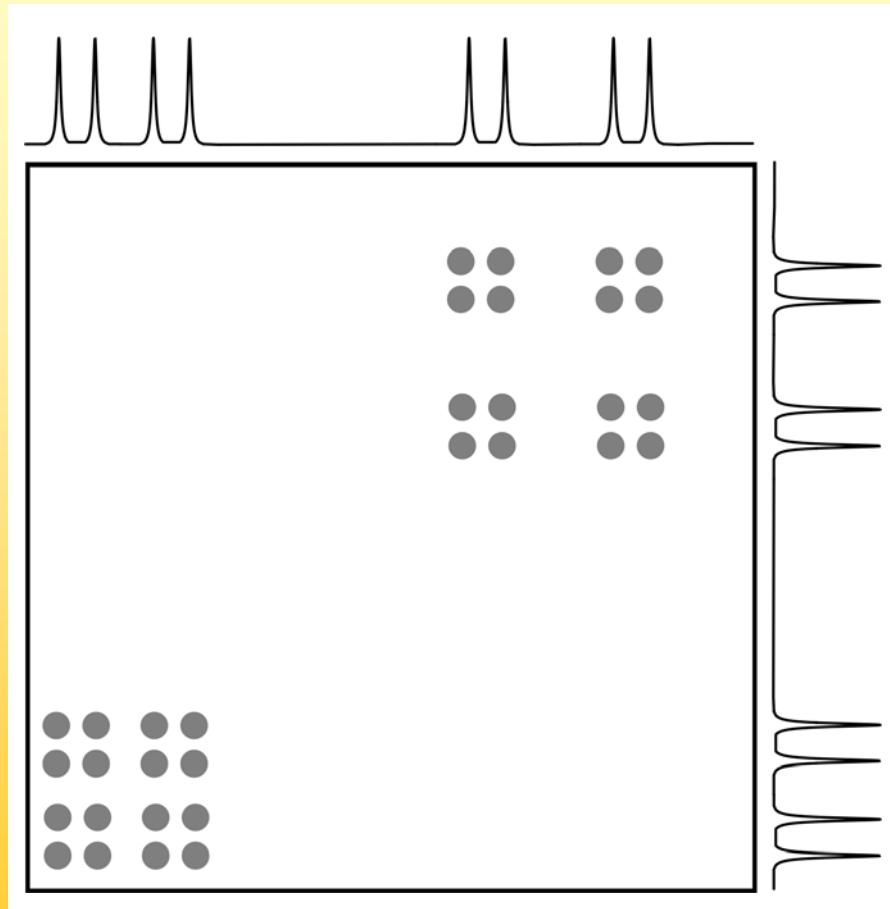


That means:
either

the diagonal is broad and
the cross peaks can vanish
because of overlap

or
the cross peaks are broad
and the signals with
different signs cancel

2D NMR: COSY



In the regular COSY
the solution is a
magnitude calculation

We have seen already
that the DQF-COSY is
another solution for
that problem

That's it

www.fmp-berlin.de/schmieder/teaching/selenko_seminars.htm

NMR of organic compounds and small biomolecules III

Peter Schmieder
AG Solution NMR