

Fourier Transform and Spectral Analysis

Joerg Wichard

18.05.2009

Introduction

- Historical Background
- Fourier Synthesis
- Fourier Analysis
- Time Frequency Analysis
- Applications

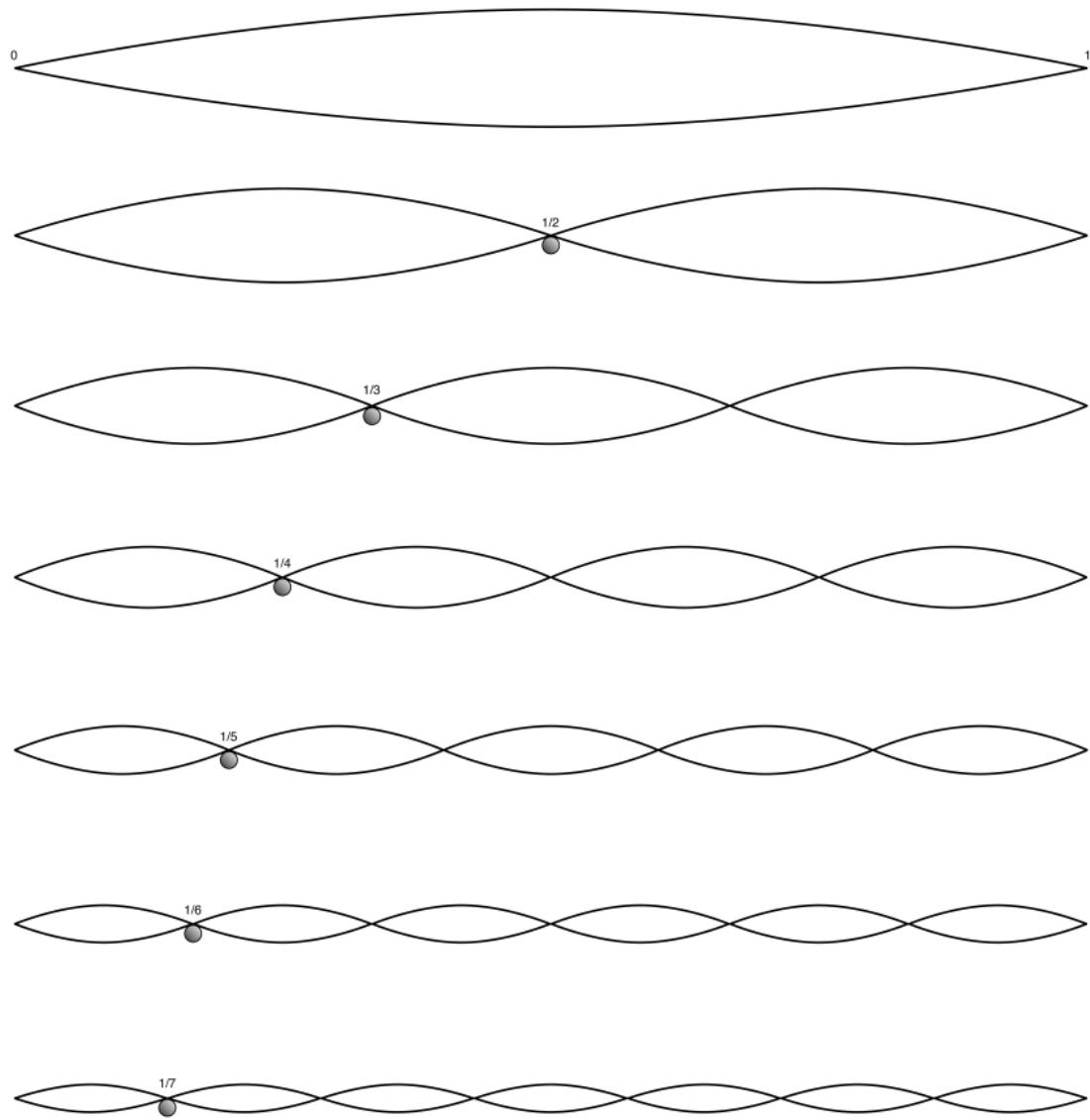
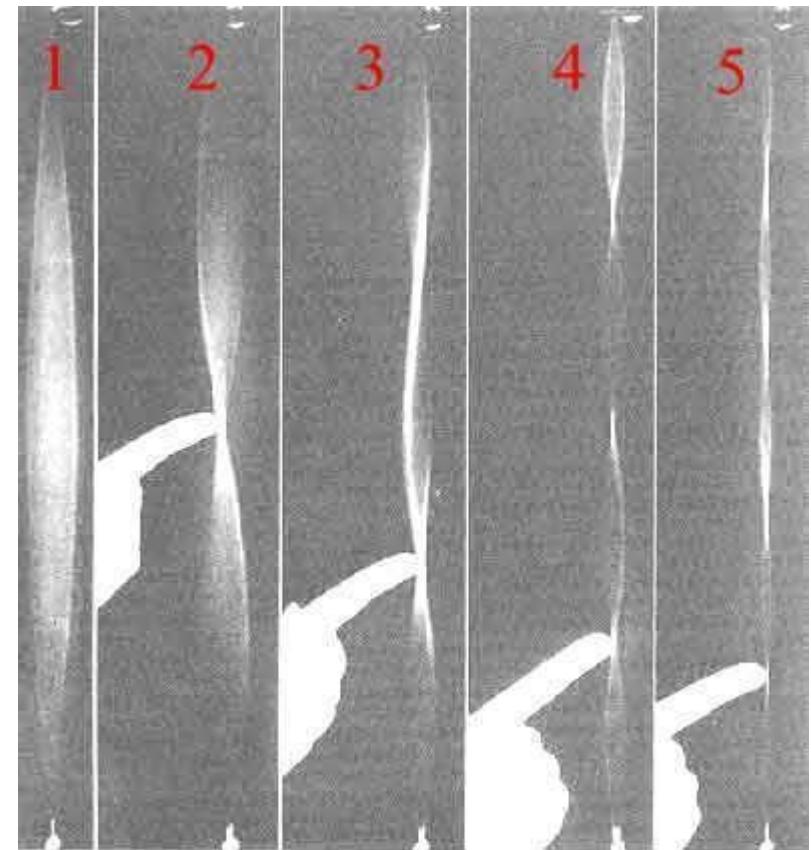
Jean Baptiste Joseph Fourier (1768-1830)

*Théorie analytique
de la chaleur (1822)*

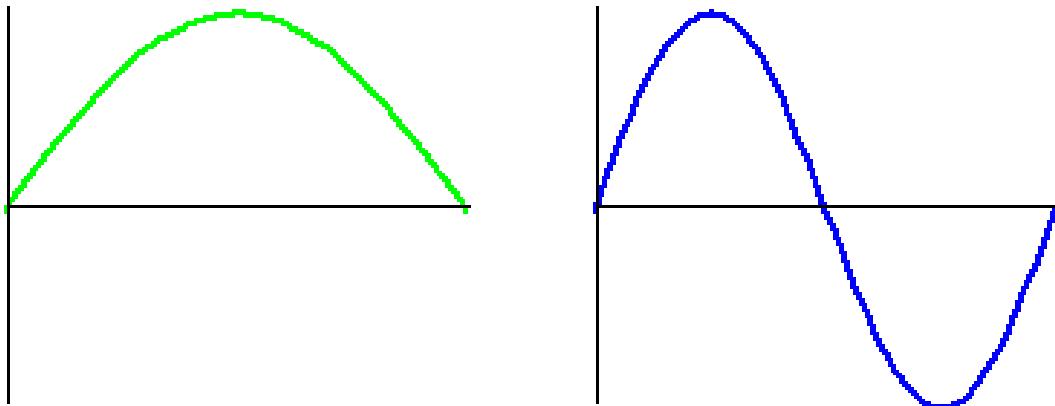
**A continuous periodic
function can be written
as a sum of sine-waves**

$$f(t) = a_0 + \sum_{n=1}^N (a_n \cos(n\omega t) - b_n \sin(n\omega t)).$$

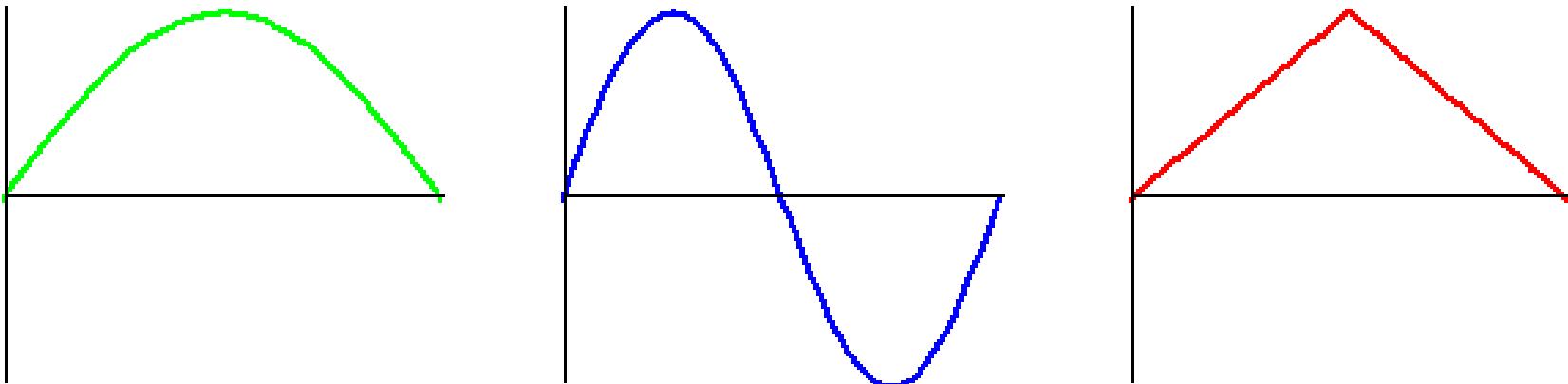
Vibrating Strings



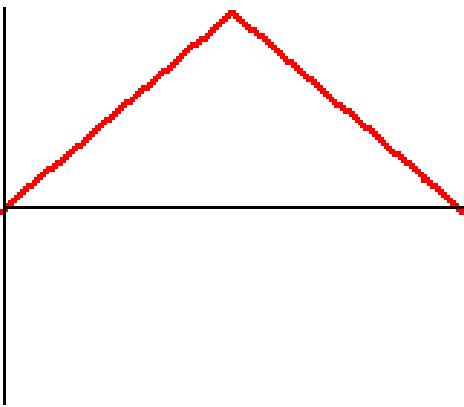
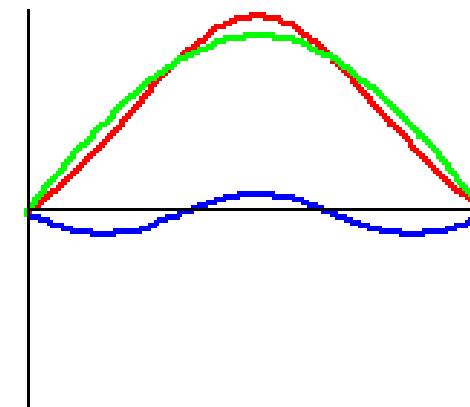
Vibrating Strings



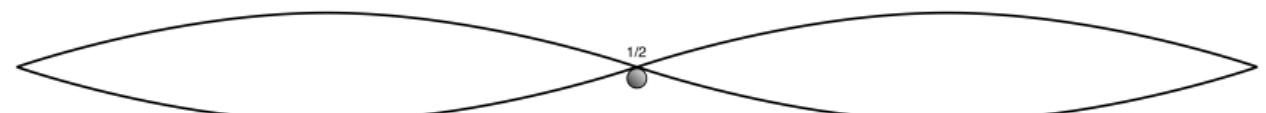
Vibrating Strings



Vibrating Strings



a_1 ω



a_2 2ω

a_3 3ω

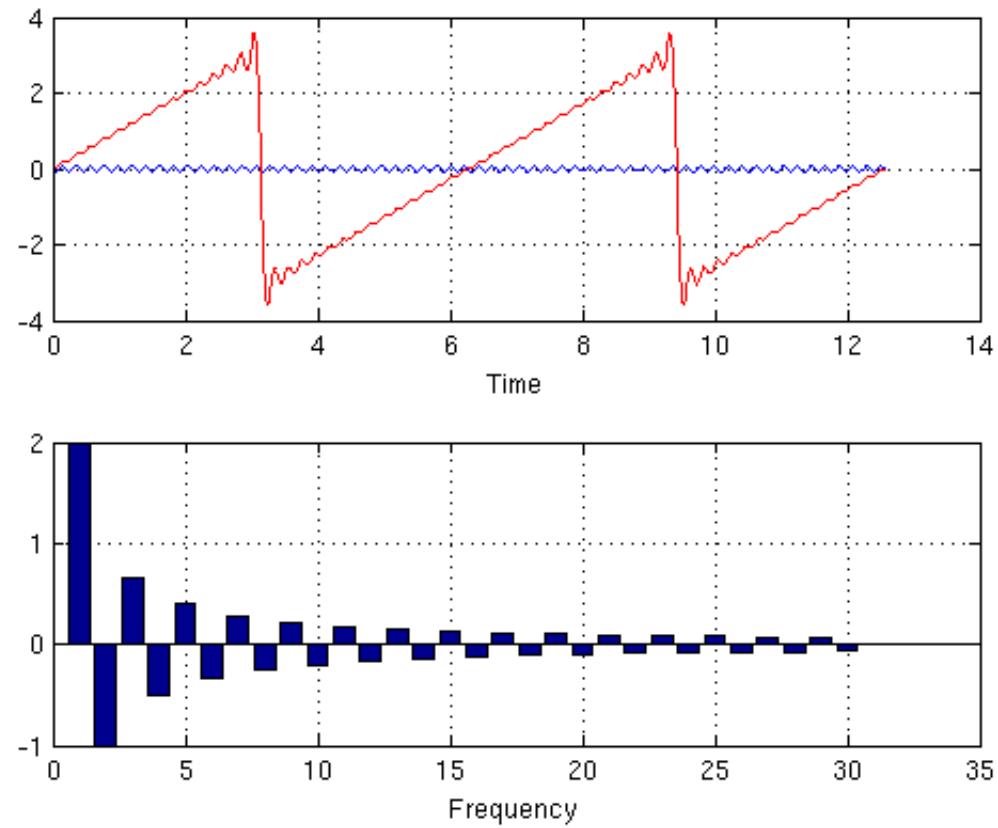
a_4 4ω

a_5 5ω

a_6 6ω

a_7 7ω

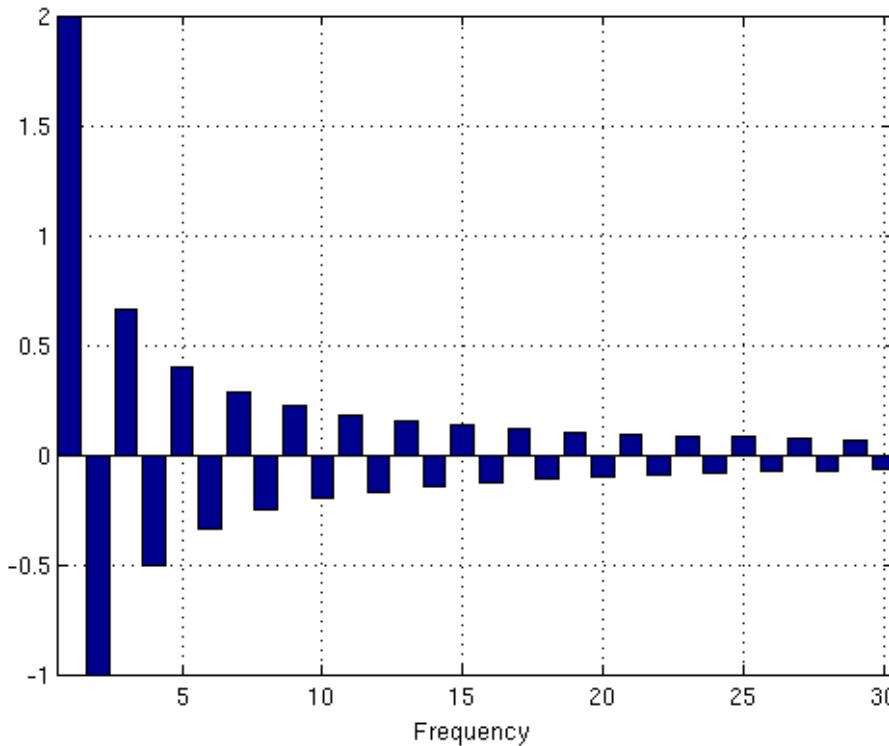
Sawtooth



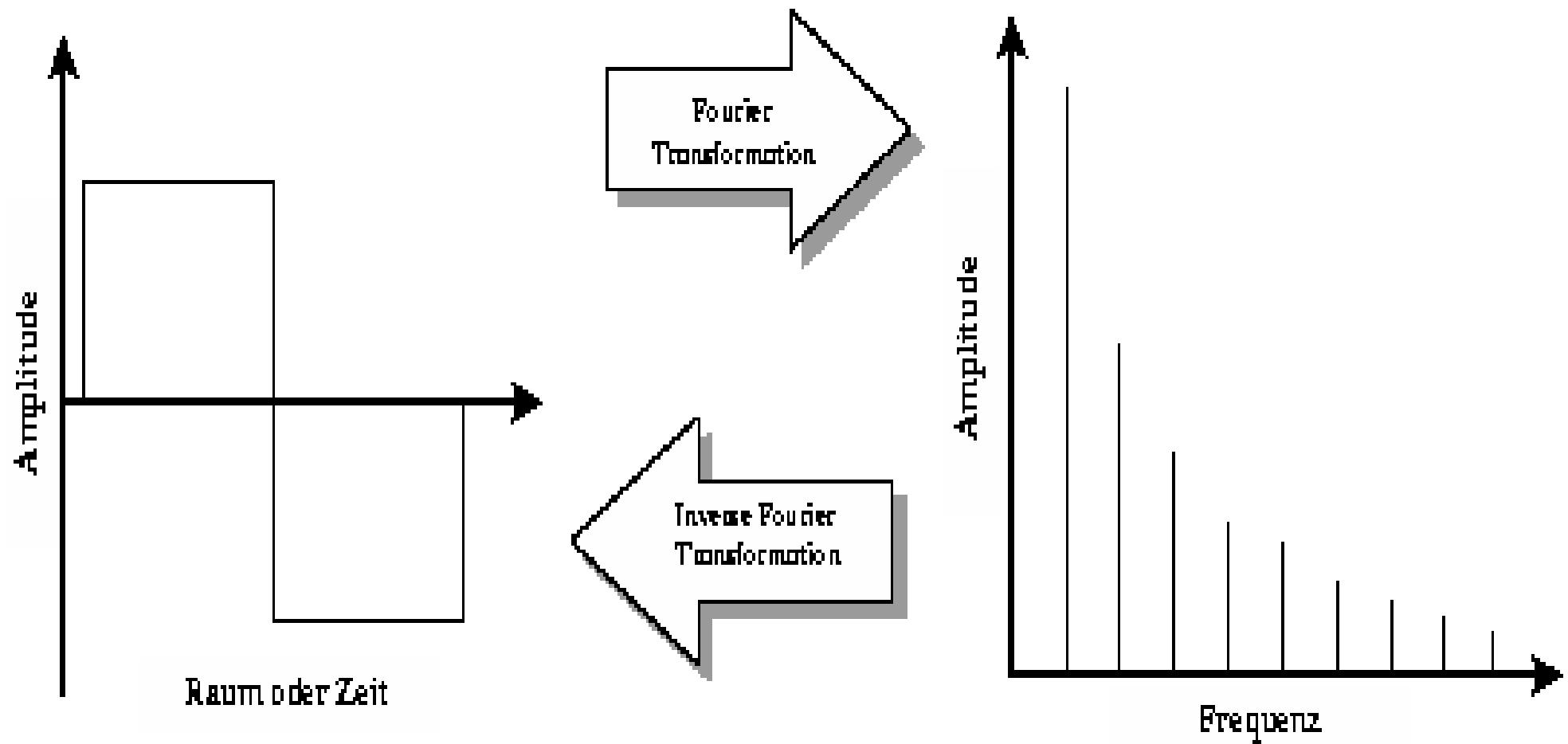
$$c(t) = 2 \sum_{k=1}^{\infty} \frac{(-1)^k}{k} \sin(k \cdot t)$$

A continuous periodic function can be written as a sum of sine-waves

$$f(t) = a_0 + \sum_{n=1}^N (a_n \cos(n\omega t) - b_n \sin(n\omega t)).$$



Coefficients are forming the spectrum



$$f(t) = a_0 + \sum_{n=1}^N (a_n \cos(n\omega t) - b_n \sin(n\omega t)).$$

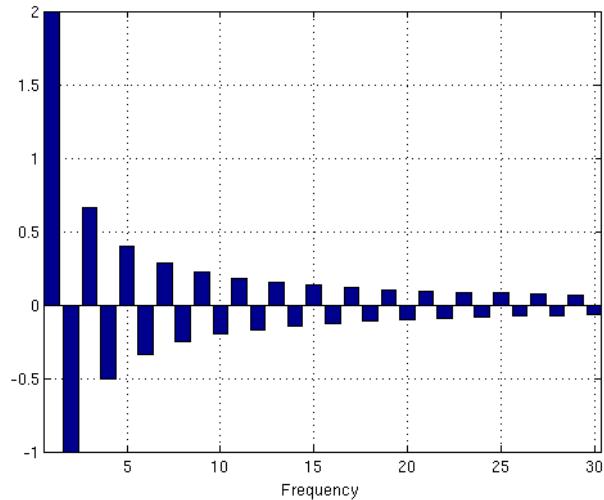
Fourier series and complex numbers

$$f(t) = a_0 + \sum_{n=1}^N (a_n \cos(n\omega t) - b_n \sin(n\omega t)).$$

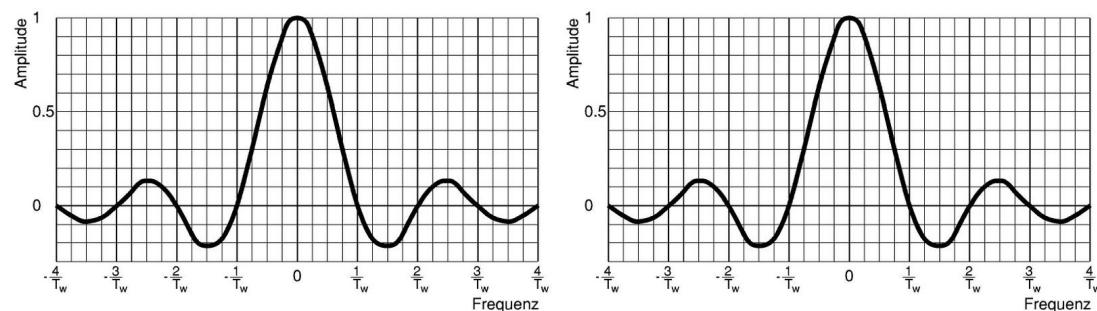
$$= a_0 + \sum_{n=1}^N \frac{1}{2} (a_n(e^{in\omega t} + e^{-in\omega t}) + i b_n(e^{in\omega t} - e^{-in\omega t}))$$

$$f(t) = \sum_{n=-N}^N c_n e^{in\omega t}$$

From periodic signals to continuous functions



$$f(t) = a_0 + \sum_{n=1}^N (a_n \cos(n\omega t) - b_n \sin(n\omega t)).$$



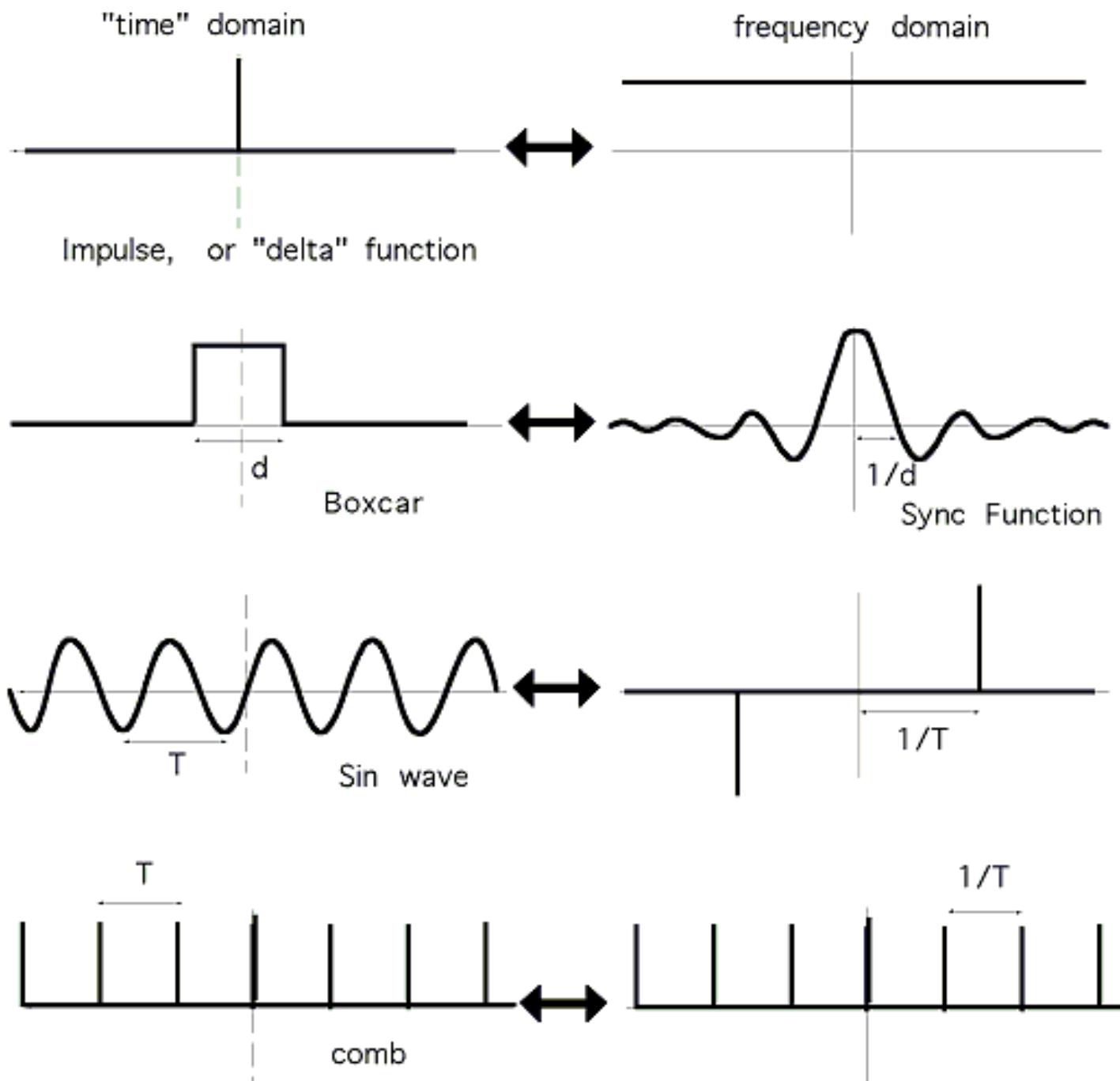
$$f(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} a(\omega) e^{i\omega t} d\omega$$

Spectrum has a real and an imaginary part !

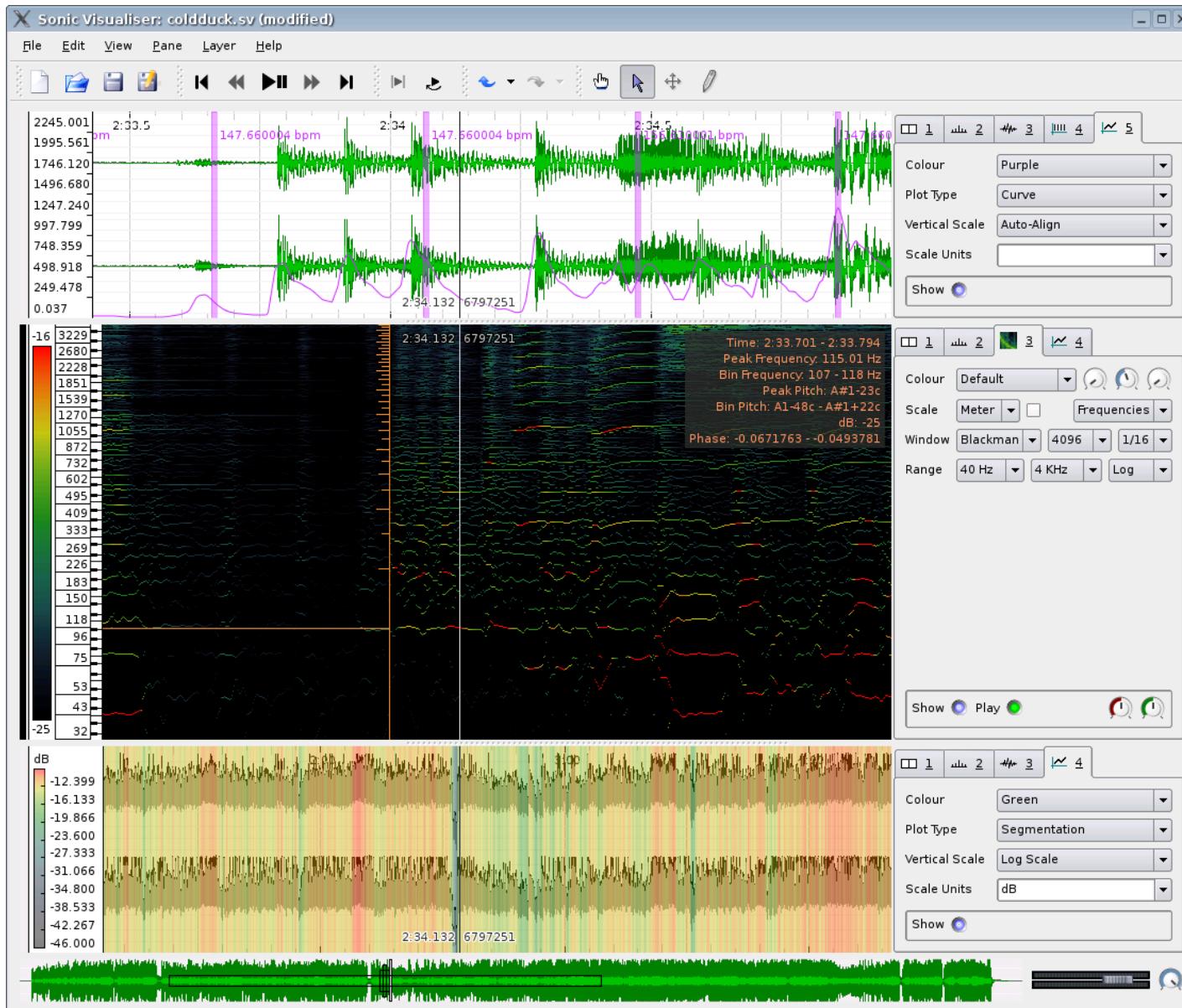
From periodic signals to continuous functions

$$f(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} a(\omega) e^{i\omega t} d\omega \quad a(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt.$$

Spectral Density: $\Phi(\omega) = a(\omega) \cdot \overline{a(\omega)}$

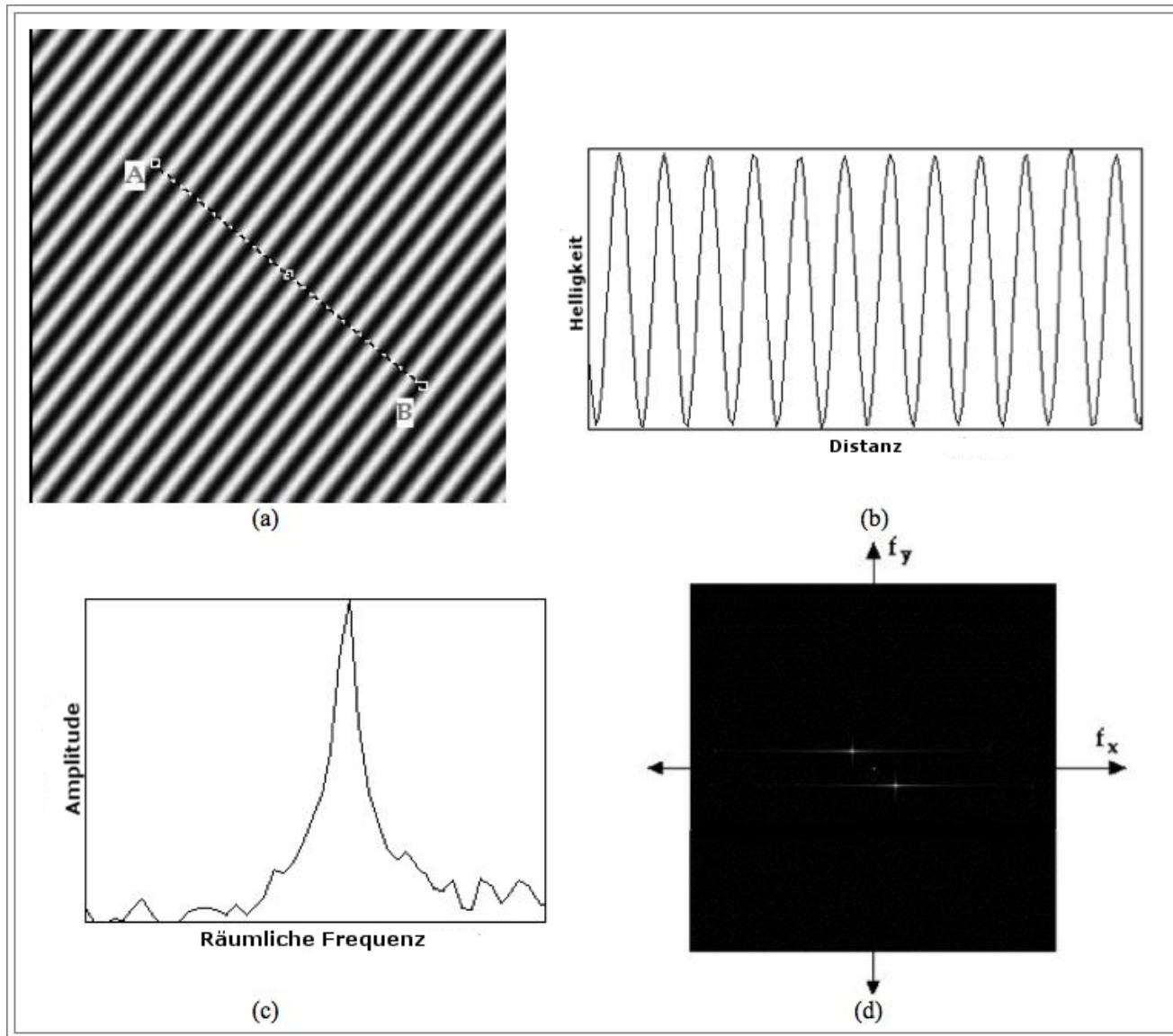


Typical Applications: Signal Analysis

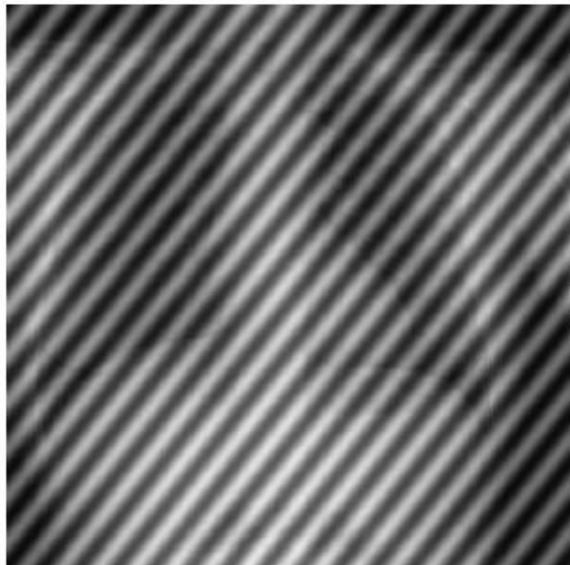


www.sonicvisualiser.org

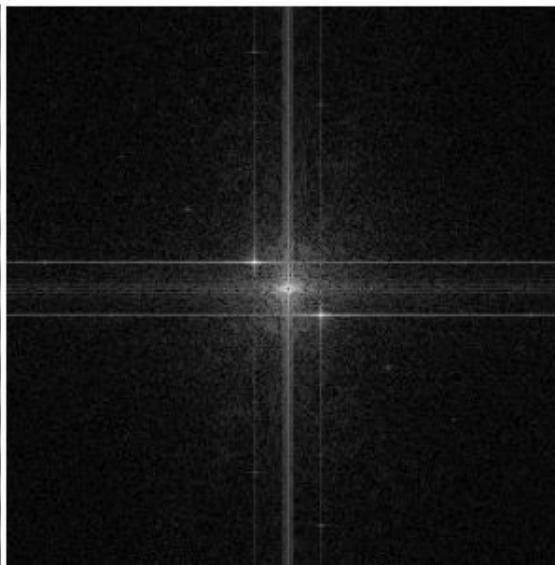
Typical Applications: Image Processing



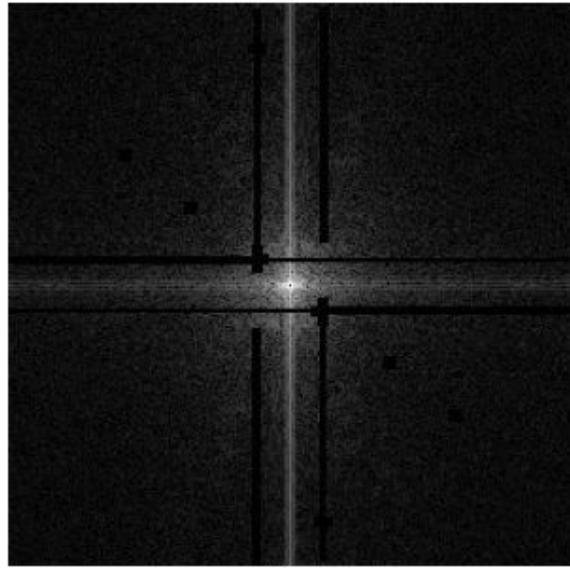
Typical Applications: Image Processing



(a)



(b)



(c)

(d)

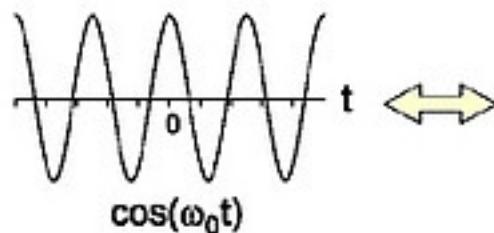
$f(t)$

$F(\omega)$

Re

Im

a)

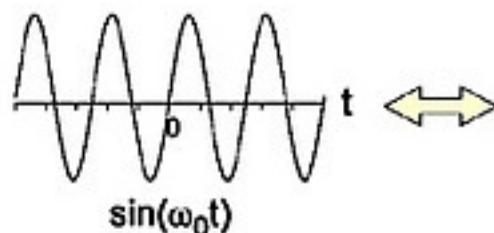


$$\cos(\omega_0 t)$$

$$\delta(\omega + \omega_0) + \delta(\omega - \omega_0)$$

$$0$$

b)

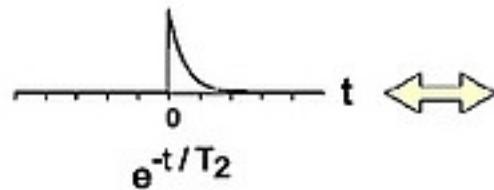


$$\sin(\omega_0 t)$$

$$0$$

$$\delta(\omega + \omega_0) - \delta(\omega - \omega_0)$$

c)

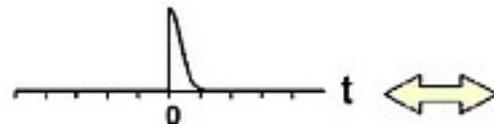


$$e^{-t/T_2}$$

$$\frac{1/T_2}{(1/T_2)^2 + \omega^2}$$

$$\frac{-\omega}{(1/T_2)^2 + \omega^2}$$

d)

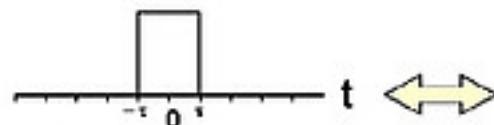


$$e^{-\sigma^2 t^2 / 2}$$

$$e^{-\omega^2 / 2 \sigma^2}$$

$$e^{-\omega^2 / 2 \sigma^2} \operatorname{erf}(\omega / \sqrt{2\sigma^2})$$

e)

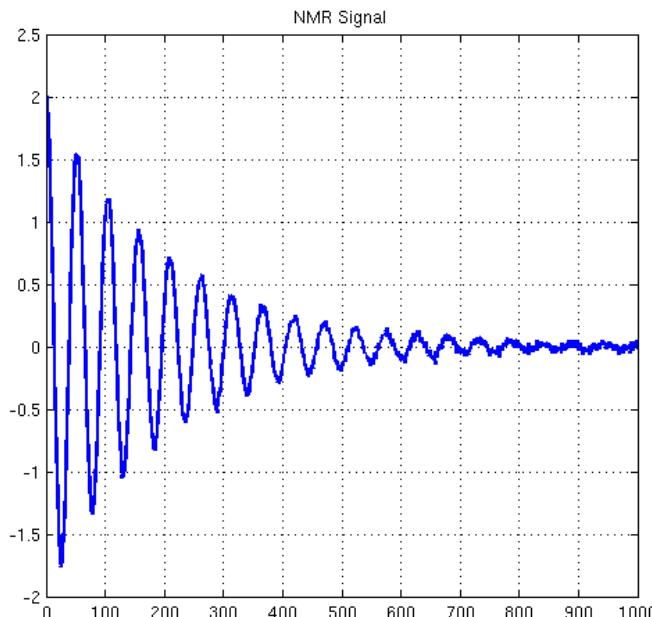
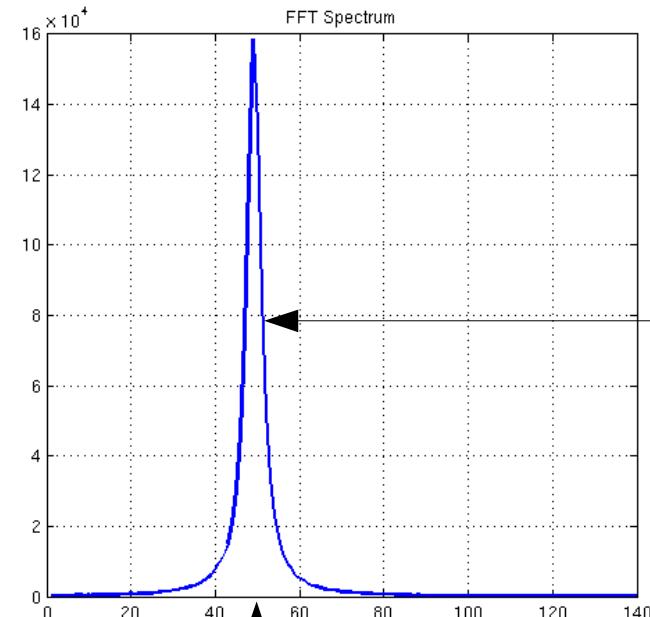


$$\Phi(t+\tau) - \Phi(t-\tau)$$

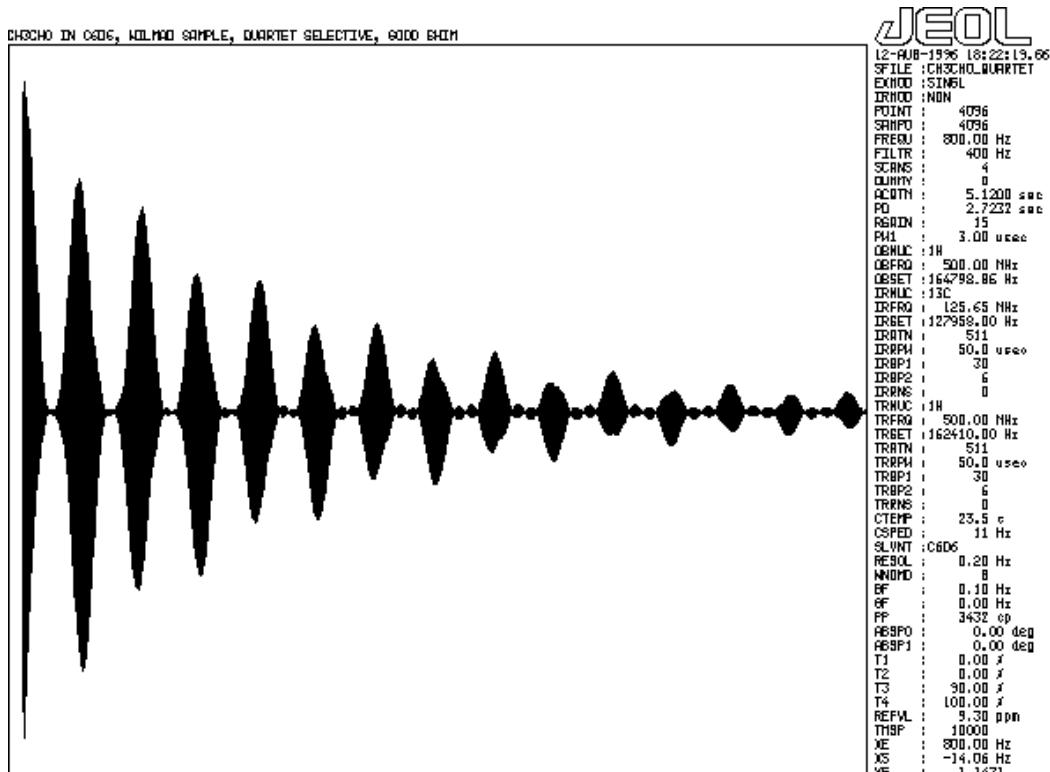
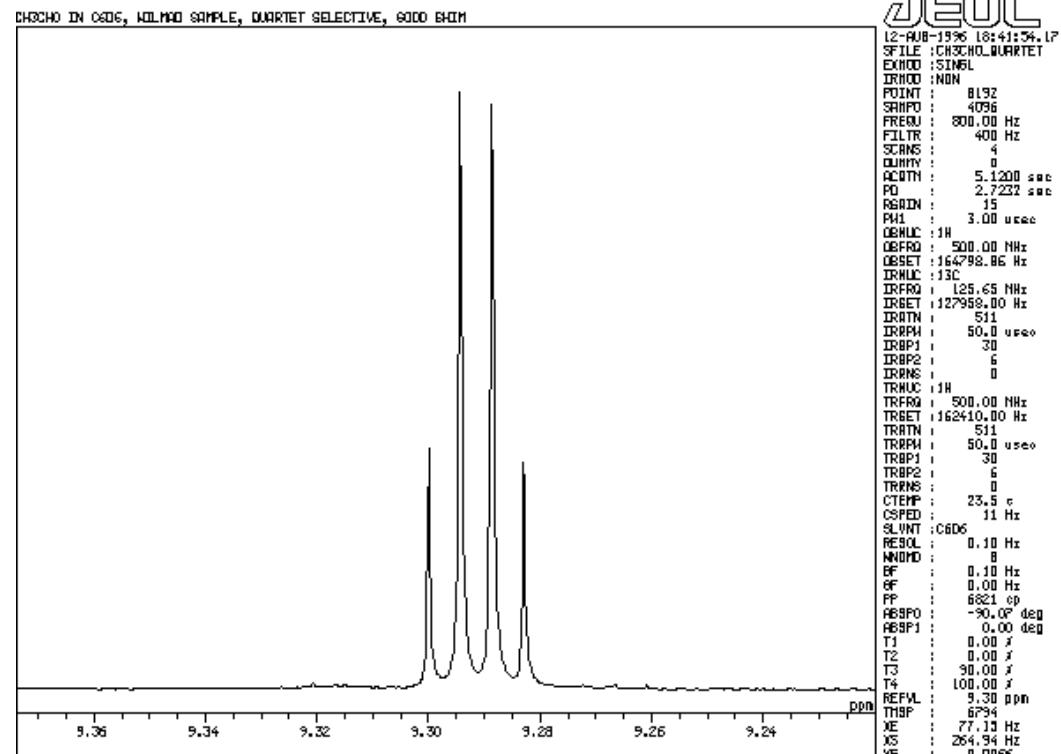
$$\frac{\sin(\omega t)}{\omega}$$

$$0$$

Typical Applications: Signal Analysis



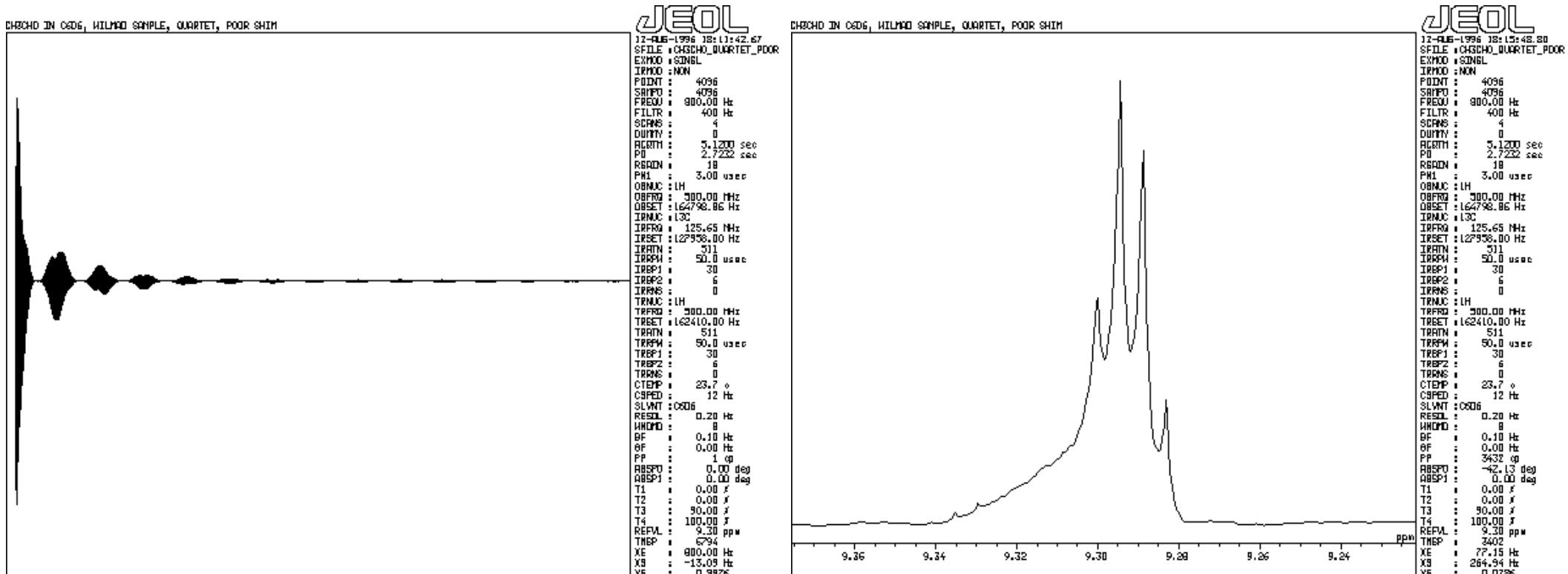
The Sound of Chemistry



CH₃CHO FID

CH₃CHO Spectrum

The Sound of Chemistry



CH3CHO FID

CH3CHO Spectrum

That's it!

References

- <http://de.wikipedia.org/wiki/Fourier-Transformation>
- http://en.wikipedia.org/wiki/Fourier_transform
- <http://www.chemie.uni-erlangen.de/oc/research/NMR/music.html>
- <http://www.sonicvisualiser.org>