
Solid-State NMR 

Anisotropic Interactions are not averaged due to tumbling of the molecule 
- Dipolar Interaction 
- Chemical Shift Anisotropy (CSA) 
- Quadrupolar Interactions 

Consequences 
- Broad Resonance Lines 
- Low Sensitivity (X-Detection) 
- A lot of Structural Information 

Magic Angle Spinning (MAS):  
The orientation of a molecule at any time (t+Δt) is known  



Why Solid-State NMR ? 

Misfolding Peptides and Protein Amyloidosis  
is a common motif in many diseases 

•  β-Amyloid (Alzheimer´s Disease) 
•  α-synuclein (Parkinson´s Disease) 
•  Huntingtin 
•  Prion diseases  
 (CJD, GSS, FFI, Kuru, BSE) Grigorieff,  

PNAS 2008 

Membrane Proteins 
GPCRs, Ion Channels, Transporters 

PDB Database: 160 / 51663 (July 3, 2008) 
20-30% of open reading frames 
60% of all drug targets  

Kobilka, Stevens, Schertler, Science 2008   



Bacteriorhodopsin 

Griffin and co-worker, Determination of Membrane-Protein  
Structure by Rotational Resonance NMR – Bacteriorhodopsin,  
Science 251, 783-786 (1991) 



β-Amyloid and Alzheimer's disease 

Tycko and co-worker (2002) PNAS 99, 16472-16747 

(a) fpRFDR-CT dephasing (b) DQCSA to  
characterize φ/ψ  for CO selectively labeled Aβ1-40 



Microcrystalline uniformly labeled proteins 

Resonance Assignment:  
Oschkinat, Baldus, de Groot, SH3 (2000) JMR 143, 411-416 
Zilm and McDermott, BPTI (2000) JBNMR 16 209-219 

Structure Determination:  
Oschkinat, α-spectrin SH3, Nature (2002) 
Griffin + co-worker MLF, PNAS (2002) 



The KcsA Potassium Channel 

Baldus and co-worker (2006) Nature 440, 959-962 

KcsA: Potassium (K+) channel 
Kv1.3: Scorpion kaliotoxin 



The prion domain of Het-s  

Infectious loop 

Meier and co-worker (2008) Science 319, 1523-1526 



MAS solid-state NMR equipment 
Diameter MAS Frequency 
7.0 mm    < 8 kHz 
4.0 mm  < 18 kHz 
3.2 mm < 23 kHz 
2.5 mm < 35 kHz 
1.3 mm < 70 kHz 



The Hamilton Operator of the Dipolar Interaction and the 
Dipolar Alphabet
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γ Iγ S
4πrIS
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The Hamilton Operator of the dipolar interaction �
for 2 particles with spin 1/2 is given by 


γ ≡ gyromagnetic ratio of the nuclei 
 ≡ Planck’s constant�
µ0 ≡ magnetic permeability  
rIS ≡ distance between the nuclei I and S. 

with
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The Dipolar Alphabet
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Secular approximation  (only frequency independent terms) 


In the heteronuclear case:
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The Hamilton Operator of the Dipolar Interaction
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Conventions: Euler-Rotations, Coordinate System 
Transformations and Wigner-Rotation Matrices




Conventions: Euler-Angles


Euler-Angles: 




Conventions: Coordinate System Transformations
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In general, a rotation of any vector 
can be described as: 


where cα = cos α, sα = sin α etc. 
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Conventions: Wigner-Rotation Matrices

Rotation of a vector:
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with the reduced Wigner Rotation Matrices 
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∑ Rij α,β ,γ( )

Rotation of a Spin Operator (2nd rank tensor):

Application of a Wigner rotation matrix�
(2nd rank tensor) (-2≤m≤+2) 
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Conventions: Wigner-Rotation Matrices

The elements d2

0x are the time dependent spherical harmonics ω(m) 

in the Hamilton operator of the dipolar interaction.  

"Addition theorem" for Wigner rotation matrices:  
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The Chemical Shift Anisotropy (CSA)


σPAS ≡ principal axis system (molecule fixed CS). �
Transformation of B0 into molecule fixed CS:
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The Chemical Shift Anisotropy (CSA)


σPAS ≡ principal axis system (molecule fixed CS). �
Transformation of B0 into molecule fixed CS:
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B0 is a vector → [set α=0 in R(α,β,γ) ]. With
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The Powder Spectrum (Pake-Pattern), η=0




The Pake-Pattern for Quadrupole and CSA Interactions


S( ): Spectral intensity  

P( ): Probability to find a dipolar vector with a defined 

orientation  with respect to the external field B0  
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S ω β( )[ ] dω  =  P β( ) dβ  

evaluation d /d  yields  
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Since P( ) = sin  (again, by using ( ) = /2 [3 cos2  1] ) 
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Symmetry of  and  transition   

→ spectrum is symmetric with respect ( ) = 0.  
 



The CSA Pake-Pattern

ω I

CS,PAS β, γ( ) = δ
2

3cos2 β −1−η sin2 β cos(2γ )[ ]

For η=0, Pake-pattern for CSA and dipole/quadrupole are equivalent

Otherwise:



Exchange Spectroscopy in Static Solids


Simulation:

1.  η=0

2.  Exchange between different�

β-angles




PISEMA for Oriented Membrane Proteins (Glass Plates) 


spectra for the M2 segment of the nicotinic acetylcholine receptor  
in DPC micelles (A) and oriented DMPC bilayers (B) 

Wu, Ramamoorthy, Opella JMR A109, 270 (1994) 

anisotropic chemical shift
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PISA-Wheels in Oriented Membrane Proteins


α-helix: orientation of a N-H bond || helix-axis


T. A. Cross and co-workers  (2000) JMR 144, 162 
S. Opella and co-workers (1999), NSB 6, 374.




Wideline Spectroscopy (WISE) in Static Solids�
yield information on Dynamics


block copolymer PS-b-PDMS




Typical Interactions

13C-1H Dipolar Interaction     ca. 20 kHz 
15N-1H Dipolar Interaction     ca. 10 kHz 
15N CSA (Δσ ~ 160 ppm)  ca. 13 kHz  (@ 18.8 T) 
13C Aliphat. CSA (Δσ ~ 30 ppm)  ca. 6 kHz (@ 18.8 T≡800 MHz) 
13C Aromat./Carbonyl CSA (Δσ ~ 150 ppm) ca. 30 kHz  (@ 18.8 T) 
1H Amide 1H CSA (Δσ ~ 12-14 ppm) ca. 10.4 kHz  (@ 18.8 T) 



The Dipolar Coupling
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DNH = −µ0
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=10.938 kHz
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µ0 =10−7  kg m
s2A2  

h =1.055 *10−34  Js

γ H = 26.75*107  1
s1T1

γN = −2.75*107  1
s1T1

rNH =1.04 *10−10  m



Motional effects are reflected in H-N dipolar couplings 

Analysis of  
S2

F S2
S 

Δt = 280 µs 

DNH = κ / Δt 

     κ = 0.355


DNH ≈ 10.5 kHz 



Magic-Angle Spinning (MAS)


Consider the Hamilton operator of a heteronuclear dipolar interaction:  
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Intuitive Explanation:  

In a vector model, the average orientation of a dipolar vector is along rotor axis.  

→  
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1
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Magic-Angle Spinning (MAS)

Hamilton operator of a heteronuclear dipolar interaction
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Under MAS:


2.
 For m=0, ω0,m has to be represented in the laboratory coordinate system. 
 


 Application of the "addition theorem" for a Wigner rotation matrix yield


For m=0, this expression is exactly zero if βRL= 54.735˚ (=                      ). 

(α=0 for symmetric interactions). 
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1.    In the rotor fixed frame, terms m≠0 are averaged to zero.




Magic-Angle Spinning (MAS)


Under MAS:


2.
 For m=0, ω0,m has to be represented in the laboratory coordinate system. 
 


 Application of the "addition theorem" for a Wigner rotation matrix yield


For m=0, this expression is exactly zero if βRL= 54.735˚ (=                      ). 

(α=0 for symmetric interactions). 
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with the reduced Wigner Rotation Matrices 




Magic-Angle Spinning (MAS)

Rotational frequency  <  Size of the interaction

→  Powder spectrum is split into rotational sidebands. 




Note on MAS spinning sidebands




Note on MAS spinning sidebands




Rotational Resonance (R2): Recoupling under MAS (1)


Levitt, Raleigh, Creuzet, Griffin, J. Chem. Phys. 92, 6347-6364 (1990). 

€ 

Δω = nωr

u-13C,15N-Thr




Rotational Resonance (R2): Recoupling under MAS (1)


Creuzet, McDermott, Gebhard, Vanderhoef, Spijkerassink, Herzfeld, Lugtenburg,  
Levitt, Griffin, Determination of Membrane-Protein Structure by Rotational 

Resonance NMR – Bacteriorhodopsin, Science 251, 783-786 (1991) 



Exercise: Derivation of the R2 condition




Cross Polarization (CP): �
Recoupling under MAS (2)


S / N = I(I +1)Nγ 3

I: spin-quantum number
N: number of nuclei in the sample
γ: Gyromagnetic Ratio

S
N
= I(I +1)Nγ 5/ 2

since noise contributes γ1/2.

→ Inverse Detection

Hartmann-Hahn condition:

ω1I = ω1S

γ I B1I = γ SB1S



Cross Polarization (CP) under MAS


Hartmann-Hahn matching
under MAS:

ω1I =ω1S + nω r

with –2 ≤ n ≤ +2

CP transfer as a function of Δω1




Exercise: Derivation of the Hartmann-Hahn 
match condition under MAS




REDOR: Recoupling in MAS NMR (3)


Gullion & Schaefer (1989) JMR 81, 196-200 

Heteronuclear dipolar interaction (under MAS) 
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Exercise: Calculate the Average Hamiltonian for REDOR

The Average-Hamiltonian over one rotor period yields 
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Recoupling in MAS NMR: REDOR


15N,13Cα-Glycine


The REDOR dephasing signal can be represented as  

Experimentally, a dephasing and a reference experiment are recorded.  
(Reference experiment: simultaneous 180˚ pulse on 15N and 13C in the center. 

To eliminate relaxation effects, the following expression is used 
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REDOR-Example 1: Study of the signalling mechanism in 
a bacterial chemoreceptor (aspartate receptor) 

1.  Ligand induced changes are propagated through the membrane and control the 
phosphorylation of a histidine-kinase (CheA).  

2.  X-ray structure available from the periplasmic domain.  
3.  Proposed mechanism:   

(a) 4˚ pivot motion between monomer subunits or  
 (b) 1.6 Å piston motion of the C-terminal helix (α4) relative to the other helices  

      within one subunit.  
4. Labeling: 19F in Leu163Phe and 13CO in Ser56Cys.  

L.K. Thompson and 
co-workers, Biochem. 
(2001) 



REDOR-Example 1: Study of the signalling mechanism in 
a bacterial chemoreceptor (aspartate receptor)


REDOR: Ligand-induced conformational change lead to a change of (1.0±0.3) Å  
in the distance between helices α1 and α4.   



REDOR-Example 2: Frequency Selective REDOR in 
Uniformly Labeled Samples (Bacteriorhodopsin)


1.  Only Asp: REDOR filter to suppress all C=O which are bonded to 15N (Asn). 
2.  Measurement of distances between the Schiff-base 15N (K216) to Asp 13COOH


R.G. Griffin and

co-workers




REDOR-Example 2: Frequency Selective REDOR in 
Uniformly Labeled Samples (Bacteriorhodopsin)


1.  Only Asp: REDOR filter to suppress all C=O which are bonded to 15N (Asn). 
2.  Measurement of Distances between the Schiff-base 15N (K216) to Asp 13COOH


R.G. Griffin and

co-workers




Rotary Resonance Recoupling (R3)


15N-labeled N-methyldiphenyl-phosphoamidate 

R3 spectra at n = ±1 (a), ±2 (b) and ±0 (c)  

[ωRF = 2ωr], ωRF on 15N 

31P




C7: Recoupling under MAS


In C7, 2π pulses reintroduce 13C,13C dipolar couplings


In addition, 2π pulses are phase shifted synchronously to the rotor revolution


13C


Levitt and co-workers, Chem. Phys. Lett. 242, 304-309 (1995)


1 rotation in spin space 
2 rotations in real space 



C7: Recoupling under MAS


Static Hamiltonian: 
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∝T2,0
IS +

1
2

3
8

T2,+2
IS + T2,−2

IS( )

Application of 

RF Pulses: 


"Average Hamiltonian"


spatial
 spin




C7: Recoupling under MAS


€ 

HD
IS (t) =  ω (m ) ΩPR( ) exp imωr t( )  ×

µ=−2

+2

∑
m=−2

+2

∑    dµ 0
(2) ωrf t( ) T2µ

IS  

1 rotation in spin space 
2 rotations in real space 



C7: Recoupling under MAS


In C7, rf elements are phase shifted synchronously with the rotor revolution:


€ 

HD
IS (t) =  ω (m ) ΩPR( ) exp imωr t( )  ×

µ=−2

+2

∑
m=−2

+2

∑    dµ 0
(2) ωrf t( ) T2µ

IS  exp(−iµφp )

€ 

H D
IS (t)∝exp imωr t( ) × exp(−iµφp )

= exp i2π p 2m
7
−

µ
7

 

 
 

 

 
 

 

 
 

 

 
 p = [0,6]


  

€ 

ω (±1) = 
3
2
3 γ Iγ S
r3
sin 2βPR( )exp ±iγPR( )

Since µ=±2

 Recouling of m= ± 1


€ 

2m −µ
7

= q ; q=integer


1 rotation in spin space 
2 rotations in real space 



C7: Recoupling under MAS


N RF elements in �
n rotor periods


€ 

2m −µ
7

= q



C7: Recoupling under MAS�
 13C-13C Correlations in N-formyl-Met-Leu-Phe




Frequency Switched Lee-Goldburg (FSLG) and �
Phase Modulated Lee-Goldburg (PMLG) Experiments�

for homonuclear 1H,1H Decoupling


To obtain decoupling, 

magnetization has to be rotated �
around the magic angle in spin space:




PMLG spectrum of a 15N labeled sample of a SH3 domain






Rotational Resonance (R2): Recoupling under MAS (1)


Levitt, Raleigh, Creuzet, Griffin, J. Chem. Phys. 92, 6347-6364 (1990). 

€ 

Δω = nωr

u-13C,15N-Thr




Exercise: Derivation of the R2 condition


Basis Set of Single-Transition operators


€ 

Ix
(2,3) =

1
2
I+S− + I−S+[ ]

Iy
(2,3) = −

i
2
I+S− − I−S+[ ]

Iz
(2,3) =

1
2
Iz − Sz[ ]

€ 

Ix
(1,4 ) =

1
2
I+S+ + I−S−[ ]

Iy
(1,4 ) = −

i
2
I+S+ − I−S−[ ]

Iz
(1,4 ) =

1
2
Iz + Sz[ ]

€ 

H = (ΩI +ΩS )Iz
(1,4 ) + (ΩI −ΩS )Iz

(2,3) −ω IS
D (t)Ix

(2,3)

=ΩΣ Iz
(1,4 ) +   ΩΔ Iz

(2,3) −ω IS
D (t)Ix

(2,3)( ) 

Hamilton-Operator in the Basis Set of Single Transition Operators


Hamilton Operator


€ 

H =ΩI Iz +ΩSSz +ω IS
D (t) T20

IS



Exercise: Derivation of the R2 condition

We used:


€ 

ˆ T 20
IS =

1
2

3ˆ I 1z
ˆ I 2z − ˆ I 1 ˆ I 1[ ] = 2 ˆ I 1z

ˆ I 2z −
1
2

ˆ I 1
+ ˆ I 2

− + ˆ I 1
− ˆ I 2

+( )

1.  The term IzSz can be neglected, since it corresponds to the unity operator

       in the Basis Set of Single Transition Operators


€ 

2I1zI2z = Iz
(1, 4)( )2 − Iz

(2, 3)( )2 =
1
4
1(1, 4) − 1(2, 3)( )

2. Iz(1,4) is a Constant of Motion and commutes


       →  only          


            has to be considered


€ 

ΩΔ Iz
(2,3) −ω IS

D (t)Ix
(2,3) 



Exercise: Derivation of the R2 condition


Transformation into a Time independent Frame


€ 

ΩΔ (t) =ΩΔ
isot + dt '  ΩΔ

(k ) exp ikωr t'( )
k=−2
k≠0

+2

∑
0

t

∫

€ 

U+I1xU =

exp − iΩ1I1zt( )I1x exp +iΩ1I1zt( ) → I1x cos(Ω1 t)+ I1y sin(Ω1 t)

Example: Propagator for free evolution applied to a Spin Ix


€ 

U = exp −iΩΔ (t)Iz
(2,3)( )



Exercise: Derivation of the R2 condition

The Hamilton Operator in the time independent Frame


€ 

ˆ H (2,3)(t) =ω IS
D (t)  ˆ U + ˆ I x

(2,3) ˆ U 

=ω IS
D (t)   ˆ U + 1

2
ˆ I (2,3)

+ + ˆ I (2,3)
−( ) 

  
 

  ̂
 U 

=
ω IS

D (t)
2

  ˆ I x
(2,3) cosΩΔ (t) + ˆ I y

(2,3) sinΩΔ (t)[ ]

=
ω IS

D (t)
2

  ˆ I (2,3)
+ exp(−iΩΔ ) + ˆ I (2,3)

− exp(+iΩΔ )[ ]

€ 

ω IS
D( t) = ω0,m

IS exp imωr t( )
m=−2

+2

∑Since




Exercise: Derivation of the R2 condition

Finally, the Hamilton Operator can be re-written as


For vanishing anisotropy and asymmetry, one obtains


€ 

ˆ H (2,3)(t) = ω0,m
IS eimω r t

m=−2

+2

∑   { I(2,3)
+ exp −i ΩΔ

isot + dt' ΩΔ
(k )eikω r t '

k≠0
∑

0

t

∫
 

 
  

 

 
  

 

 
 
 

 

 
 
 
+

+ I(2,3)
− exp +i ΩΔ

isot + dt ' ΩΔ
(k )eikω r t '

k≠0
∑

0

t

∫
 

 
  

 

 
  

 

 
 
 

 

 
 
 
 }

€ 

ˆ H (2,3)(t) = ω0,m
IS exp i(mωr −Ωiso

Δ )t[ ]I(2,3)
+ + exp i(mωr +Ωiso

Δ )t[ ]I(2,3)
−{ }

m=−2

+2

∑

€ 

Δω = nωrRotational Resonance Condition: 




Exercise: Derivation of the R2 condition

This means that e.g. the n=1 spatial component is recoupled


  

€ 

ω0,±1
IS = µ 0

γ Iγ S
4πrIS

3   
3
8 sin 2β( ) exp iγ( )

The mixing time dependence can therefore be analytically written as


€ 

1
2 I1z − I2z( ) t[ ] = Iz

(2, 3) t[ ] = dγ dβ
0

π

∫   sinβ  cosω0,±1
IS t( )

0

2π

∫



Exercise: Derivation of the Hartmann-Hahn match 
condition under MAS


€ 

H =ω1I Iz +ω1SSz + 2bIS
D (t)IxSx

Hamilton-Operator in the Doubly Rotating Frame (rf along x-axis): 


This can be rewritten


€ 

H T( t) =
ω D(t)

2
I+ + I −( ) S+ + S−( )    +    ω1I I z +ω1S Sz

= H1
T(t)+H 0

T



Exercise: Derivation of the Hartmann-Hahn match 
condition under MAS


Eliminate the oscillatory rf field contribution


€ 

˜ H ( t) = ˜ U +  H (t) ˜ U 

˜ U = ˆ T exp − i dt'  H 0
T(t ')

0

τ C

∫
 
 
 

  

 
 
 

  
= exp − iω1I I z t{ }exp − iω1S Sz t{ }



€ 

˜ H ( t) = exp +iω1S Sz t{ }exp +iω1I I z t{ }
ω D

2
S+ + S−( ) I+ + I −( )

 

 
 

 

 
 exp − iω1I I z t{ }exp − iω1S Sz t{ }

=
1
2

ωD
(n)

n=−2

+2

∑ exp − inωr t{ } S+ exp − iω1S t{ }+ S− exp +iω1S t{ }[ ] I+ exp − iω1I t{ }+ I − exp +iω1I t{ }[ ]

=
1
2

ωD
(n)

n=−2

+2

∑ exp − inωr t{ }

              S+I+ exp − i ω1S +ω1I( )t{ }[ ] +

              S−I − exp +i ω1S +ω1I( )t{ }[ ] +

              S+I − exp − i ω1S −ω1I( )t{ }[ ] +

              S−I+ exp +i ω1S −ω1I( )t{ }[ ]

Exercise: Derivation of the Hartmann-Hahn match 
condition under MAS


Remember: 


€ 

ˆ H IS
DD = ω0, m

IS Ω( )
m =−2

+2

∑  exp imωr t( )  T20
IS

Average Hamiltonian ≠ 0 for


€ 

nωr =ω1S +ω1I
and
nωr =ω1S −ω1I


